Coordinated voltage control of a decoupled three-phase on load tap changer transformer and photovoltaic inverters for managing unbalanced networks - DTU Orbit (31/12/2018)

Coordinated voltage control of a decoupled three-phase on load tap changer transformer and photovoltaic inverters for managing unbalanced networks

The increasing penetration of fluctuating photovoltaic (PV) generation brings operational challenges for distribution system operators, such as introducing the voltage rise problem. The situation is made worse in the presence of single-phase generation being unevenly connected to the different phases. To address this problem, distribution transformers with single-phase tapping capability, together with reactive power provision of PV systems, are under investigation. This paper presents modeling and analysis of the benefits of coordinated voltage control of a decoupled three-phase on-load tap changer (OLTC) and photovoltaic inverters in a distribution system, for accommodating a greater number of photovoltaic generators in the grid. A 24 h root-mean-square simulation study is performed in the DigSilent PowerFactory with a 1 s time step using 10 min resolution consumption and production profiles on a real Danish distribution grid, as well as the developed dynamic photovoltaic generation and load models. The simulations show that the joint action of the power distribution transformer with OLTC control on each phase, and the reactive power provision of photovoltaic inverters, significantly improves the PV hosting capacity in the analyzed unbalanced scenarios without side effects, such as additional power losses, or significant neutral voltage rises

General information
State: Published
Organisations: Department of Electrical Engineering, Center for Electric Power and Energy, Energy System Management, Distributed Energy Resources, University of Padova
Contributors: Hu, J., Marinelli, M., Coppo, M., Zecchino, A., Bindner, H. W.
Pages: 264-274
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Electric Power Systems Research
Volume: 131
ISSN (Print): 0378-7796
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.31 SJR 1.048 SNIP 1.412
Web of Science (2017): Impact factor 2.856
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.32 SJR 1.032 SNIP 1.516
Web of Science (2016): Impact factor 2.688
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 2.74 SJR 0.962 SNIP 1.606
Web of Science (2015): Impact factor 1.809
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 2.86 SJR 0.996 SNIP 1.867
Web of Science (2014): Impact factor 1.749
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 2.92 SJR 1.061 SNIP 1.902
Web of Science (2013): Impact factor 1.595
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 3.13 SJR 1.068 SNIP 2.112
Web of Science (2012): Impact factor 1.694
ISI indexed (2012): ISI indexed yes