Controlling Lateral Fano Interference Optical Force with Au-Ge2Sb2Te5 Hybrid Nanostructure

We numerically demonstrate that a pronounced dipole-quadrupole (DQ) Fano resonance (FR) induced lateral force can be exerted on a dielectric particle 80 nm in radius ($R_{\text{sphere}} = 80$ nm) that is placed 5 nm above an asymmetric bow-tie nanoantenna array based on Au/Ge2Sb2Te5 dual layers. The DQ-FR-induced lateral force achieves a broad tuning range in the mid-infrared region by changing the states of the Ge2Sb2Te5 dielectric layer between amorphous and crystalline and in turn pushes the nanoparticle sideways in the opposite direction for a given wavelength. The mechanism of lateral force reversal is revealed through optical singularity in the Poynting vector. A thermal-electric simulation is adopted to investigate the temporal change of the Ge2Sb2Te5 film's temperature, which demonstrates the possibility of transiting the Ge2Sb2Te5 state by electrical heating. Our mechanism by tailoring the DQ-FR-induced lateral force presents clear advantages over the conventional nanoparticle manipulation techniques: it possesses a pronounced sideways force under a low incident light intensity of 10 mW/m², a fast switching time of 2.6 μs, and a large tunable wavelength range. It results in a better freedom in flexible nanomechanical control and may provide a new means of biomedical sensing and nano-optical conveyor belts.

General information
State: Published
Organisations: Department of Photonics Engineering, Plasmonics and Metamaterials, Dalian University of Technology, National University of Singapore, Consejo Superior de Investigaciones Científicas
Contributors: Cao, T., Bao, J., Mao, L., Zhang, T., Novitsky, A., Nieto-Vesperinas, M., Qiu, C.
Pages: 1934-1942
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: ACS Photonics
Volume: 3
Issue number: 10
ISSN (Print): 2330-4022
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 7.03 SJR 3.376 SNIP 1.714
Web of Science (2017): Impact factor 6.88
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 6.48 SJR 3.471 SNIP 1.852
Web of Science (2016): Impact factor 6.756
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 5.71 SJR 2.975 SNIP 1.51
Web of Science (2015): Impact factor 5.404
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Web of Science (2014): Impact factor
BFI (2013): BFI-level 1
ISI indexed (2013): ISI indexed no
Web of Science (2013): Indexed yes
Original language: English
Keywords: NANOSCIENCE, MATERIALS, OPTICS, PHYSICS,, PHASE-CHANGE MATERIALS, ALL-DIELECTRIC OLIGOMERS, WAVE-GUIDES, PLASMONIC NANOPARTICLES, POYNTING VECTOR, CONVEYOR BELT, RESONANCES, MANIPULATION, SURFACE, LIGHT, phase change material, Fano resonance, optical manipulation, surface plasmons, optical force
Electronic versions:
Tun_ACSPhotonics.pdf. Embargo ended: 16/09/2017
DOIs:
10.1021/ac500652b
Source: FindIt

Controlling Lateral Fano Interference Optical Force with Au-Ge2Sb2Te5 Hybrid Nanostructure - DTU Orbit (04/12/2018)