Control of selectivity in hydrosilane-promoted heterogeneous palladium-catalysed reduction of furfural and aromatic carboxides

Publication: Research - peer-reviewJournal article – Annual report year: 2018

DOI

View graph of relations

The production of liquid fuels and fine chemicals often involves multi-step reaction processes with selective hydrogenation as one of the key steps. This step most often depends on high-pressure excess hydrogen gas, fossil resources, and newly prepared metallic catalysts. Here we describe an approach to tune activity and selectivity toward transfer hydrogenation of renewable biomass derivatives over commercially available Pd/C using liquid hydrosilane as hydrogen source. The appropriate control of water-doping content, acid type, reaction temperature, and liquid H− donor dosage permits the selective formation of four different value-added products in high yields (≥90%) from bio-based furfural under mild reaction conditions (15–100 °C). Mechanistic insights into the hydrosilane-mediated cascade reactions of furfural are obtained using isotope labeling. The catalyst is recyclable and can selectively reduce an extensive range of aromatic carbonyl compounds to the corresponding alcohols or hydrocarbons in 83–99% yield, typically at 25–40 °C.
Original languageEnglish
Article number32
JournalCommunications Chemistry
Volume1
Number of pages11
ISSN2399-3669
DOIs
StatePublished - 2018
CitationsWeb of Science® Times Cited: 0
Download as:
Download as PDF
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
Word

ID: 148848773