Control of human pathogenic Yersinia enterocolitica in minced meat: Comparative analysis of different interventions using a risk assessment approach

This study aimed to evaluate the effect of different processing scenarios along the farm-to-fork chain on the contamination of minced pork with human pathogenic Y. enterocolitica. A modular process risk model (MPRM) was used to perform the assessment of the concentrations of pathogenic Y. enterocolitica in minced meat produced in industrial meat processing plants. The model described the production of minced pork starting from the contamination of pig carcasses with pathogenic Y. enterocolitica just before chilling. The endpoints of the assessment were (i) the proportion of 0.5 kg minced meat packages that contained pathogenic Y. enterocolitica and (ii) the proportion of 0.5 kg minced meat packages that contained more than 10³ pathogenic Y. enterocolitica at the end of storage, just before consumption of raw pork or preparation. Comparing alternative scenarios to the baseline model showed that the initial contamination and different decontamination procedures of carcasses have an important effect on the proportion of highly contaminated minced meat packages at the end of storage. The addition of pork cheeks and minimal quantities of tonsillar tissue into minced meat also had a large effect on the endpoint estimate. Finally, storage time and temperature at consumer level strongly influenced the number of highly contaminated packages.

General information
State: Published
Organisations: National Food Institute, Research group for Risk Benefit, Ghent University
Contributors: Van Damme, I., De Zutter, L., Jacxsens, L., Nauta, M.
Pages: 83-95
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Food Microbiology
Volume: 64
ISSN (Print): 0740-0020
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 4.3 SJR 1.66 SNIP 1.674
Web of Science (2017): Impact factor 4.09
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 4.31 SJR 1.723 SNIP 1.675
Web of Science (2016): Impact factor 3.759
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 4.24 SJR 1.705 SNIP 1.765
Web of Science (2015): Impact factor 3.682
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 3.74 SJR 1.535 SNIP 1.738
Web of Science (2014): Impact factor 3.331
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 3.81 SJR 1.772 SNIP 1.845
Web of Science (2013): Impact factor 3.374
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 3.54 SJR 1.597 SNIP 1.627
ISI indexed (2012): ISI indexed yes