Continuous production of chitooligosaccharides by an immobilized enzyme in a dual-reactor system - DTU Orbit (08/12/2018)

Continuous production of chitooligosaccharides by an immobilized enzyme in a dual-reactor system

A chitosanolytic activity found in a commercial α-amylase from Bacillus amylolyquefaciens (BAN) was covalently immobilized onto glyoxal agarose beads (25% recovery of activity) and assessed for the continuous production of chitooligosaccharides (COS). The immobilization did not change the reaction profile (with chitotriose and chitobiose as major products, using chitosans of different polymerization and deacetylation degrees), but significantly increased the enzyme thermostability. A two-step process was proposed, in which chitosan was first hydrolyzed in a batch reactor to a viscosity that could flow through a packed-bead reactor (PBR), thus avoiding clogging of the column. The relationship between hydrolysis degree of chitosan (1% w/v) and viscosity of the solution was assessed in a batch reactor. A 50% hydrolyzed chitosan did not cause any clogging of the PBR. Under these conditions, the productivity of the PBR at the lowest dilution rate was 37 gCOS L⁻¹ h⁻¹, with a conversion yield of 73%. In contrast, at the highest dilution rate, the productivity was nearly 200 gCOS L⁻¹ h⁻¹, but the conversion yield dropped to around 40%.

General information
State: Published
Organisations: Department of Chemical and Biochemical Engineering, CAPEC-PROCESS, Instituto de Catálisis y Petroleoquímica
Contributors: Santos-Moriano, P., Woodley, J., Plou, F. J.
Pages: 211-217
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Journal of Molecular Catalysis B: Enzymatic
Volume: 133
ISSN (Print): 1381-1177
Ratings:
BFI (2018): BFI-level 1
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.99 SJR 0.522 SNIP 0.977
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.39 SJR 0.647 SNIP 0.889
Web of Science (2016): Impact factor 2.269
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.12 SJR 0.657 SNIP 0.802
Web of Science (2015): Impact factor 2.189
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.5 SJR 0.744 SNIP 1.05
Web of Science (2014): Impact factor 2.128
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 3.09 SJR 1.045 SNIP 1.385
Web of Science (2013): Impact factor 2.745
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.98 SJR 1.109 SNIP 1.354
Web of Science (2012): Impact factor 2.823
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 2.74 SJR 1.053 SNIP 1.127
Web of Science (2011): Impact factor 2.735
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
Keywords: Chitooligosaccharides, Chitosanolytic enzymes, Covalent immobilization, Glyoxal agarose, Packed-bead reactor, Process optimization

DOIs: 10.1016/j.molcatb.2016.09.001

Source: FindIt

Source-ID: 2343101880

Research output: Research - peer-review > Journal article – Annual report year: 2016