Context-dependent individual behavioral consistency in Daphnia

The understanding of consistent individual differences in behavior, often termed "personality," for adapting and coping with threats and novel environmental conditions has advanced considerably during the last decade. However, advancements are almost exclusively associated with higher-order animals, whereas studies focusing on smaller aquatic organisms are still rare. Here, we show individual differences in the swimming behavior of Daphnia magna, a clonal freshwater invertebrate, before, during, and after being exposed to a lethal threat, ultraviolet radiation (UVR). We show consistency in swimming velocity among both mothers and daughters of D. magna in a neutral environment, whereas this pattern breaks down when exposed to UVR. Our study also, for the first time, illustrates how the ontogenetic development in swimming and refuge-seeking behavior of young individuals eventually approaches that of adults. Overall, we show that aquatic invertebrates are far from being identical robots, but instead they show considerable individual differences in behavior that can be attributed to both ontogenetic development and individual consistency. Our study also demonstrates, for the first time, that behavioral consistency and repeatability, that is, something resembling "personality," is context and state dependent in this zooplankter taxa.

General information
Publication status: Published
Organisations: National Institute of Aquatic Resources, Centre for Ocean Life, Lund University, Linnaeus University
Contributors: Heuschele, J., Ekvall, M. T., Bianco, G., Hylander, S., Hansson, L.
Publication date: 1 Feb 2017
Peer-reviewed: Yes

Publication information
Journal: Ecosphere (Washington, D.C.)
Volume: 8
Issue number: 2
Article number: e01679
ISSN (Print): 2150-8925
Scopus rating (2017): CiteScore 2.78 SJR 1.461 SNIP 0.951
Web of Science (2017): Impact factor 2.671
Web of Science (2017): Indexed yes
Original language: English
Keywords: Animal personality, Behavioral type, Daphnia, UV radiation, Zooplankton

Electronic versions:
DOI: 10.1002/ecs2.1679
Source: Scopus
Source-ID: 85014044290
Research output: Contribution to journal › Journal article – Annual report year: 2017 › Research › peer-review