Constructing new APN functions from known ones

We present a method for constructing new quadratic APN functions from known ones. Applying this method to the Gold power functions we construct an APN function $x(3) + \text{tr}(x(9))$ over $\mathbb{F}_2(n)$. It is proven that for $n \geq 7$ this function is CCZ-inequivalent to the Gold functions, and in the case $n = 7$ it is CCZ-inequivalent to any power mapping (and, therefore, to any APN function belonging to one of the families of APN functions known so far).