Conserved structure and expression of hsp70 paralogs in teleost fishes

Conserved structure and expression of hsp70 paralogs in teleost fishes
The cytosolic 70 KDa heat shock proteins (Hsp70s) are widely used as biomarkers of environmental stress in ecological and toxicological studies in fish. Here we analyze teleost genome sequences to show that two genes encoding inducible hsp70s (hsp70-1 and hsp70-2) are likely present in all teleost fish. Phylogenetic and synteny analyses indicate that hsp70-1 and hsp70-2 are distinct paralogs that originated prior to the diversification of the teleosts. The promoters of both genes contain a TATA box and conserved heat shock elements (HSEs), but unlike mammalian HSP70s, both genes contain an intron in the 5' UTR. The hsp70-2 gene has undergone tandem duplication in several species. In addition, many other teleost genome assemblies have multiple copies of hsp70-2 present on separate, small, genomic scaffolds. To verify that these represent poorly assembled tandem duplicates, we cloned the genomic region surrounding hsp70-2 in Fundulus heteroclitus and showed that the hsp70-2 gene copies that are on separate scaffolds in the genome assembly are arranged as tandem duplicates. Real-time quantitative PCR of F. heteroclitus genomic DNA indicates that four copies of the hsp70-2 gene are likely present in the F. heteroclitus genome. Comparison of expression patterns in F. heteroclitus and Gasterosteus aculeatus demonstrates that hsp70-2 has a higher fold increase than hsp70-1 following heat shock in gill but not in muscle tissue, revealing a conserved difference in expression patterns between isoforms and tissues. These data indicate that ecological and toxicological studies using hsp70 as a biomarker in teleosts should take this complexity into account.

General information
State: Published
Organisations: National Institute of Aquatic Resources, Section for Marine Living Resources, University of British Columbia
Contributors: Metzger, D. C., Hansen, J. H., Schulte, P. M.
Pages: 10-20
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Comparative Biochemistry and Physiology - Part D: Genomics and Proteomics
Volume: 18
ISSN (Print): 1744-117X
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.67 SJR 0.923 SNIP 0.704
Web of Science (2017): Impact factor 2.913
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.73 SJR 0.953 SNIP 0.851
Web of Science (2016): Impact factor 2.857
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.44 SJR 1.022 SNIP 0.861
Web of Science (2015): Impact factor 2.254
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.4 SJR 0.948 SNIP 0.842
Web of Science (2014): Impact factor 2.055
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.32 SJR 0.84 SNIP 0.779
Web of Science (2013): Impact factor 2.823
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.52 SJR 0.767 SNIP 0.899
Web of Science (2012): Impact factor 2.875
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1