Computer-aided modeling framework for efficient model development, analysis and identification - DTU Orbit (09/12/2018)

Computer-aided modeling framework for efficient model development, analysis and identification: Combustion and reactor modeling

Model-based computer aided product-process engineering has attained increased importance in a number of industries, including pharmaceuticals, petrochemicals, fine chemicals, polymers, biotechnology, food, energy, and water. This trend is set to continue due to the substantial benefits computer-aided methods introduce. The key prerequisite of computer-aided product-process engineering is however the availability of models of different types, forms, and application modes. The development of the models required for the systems under investigation tends to be a challenging and time-consuming task involving numerous steps, expert skills, and different modeling tools. This paper introduces a generic methodology that structures the process of model development, analysis, identification, and application by providing the modeler with the work-flow that needs to be followed in a systematic manner. The methodology has been implemented into a computer-aided modeling framework, which combines expert skills, tools, and database connections that are required for the different steps of the model development work-flow with the goal to increase the efficiency of the modeling process. The framework has two main branches; the first branch deals with single-scale model development while the second branch introduces features for multiscale model development to the methodology. In this paper, the emphasis is on single-scale model development and application part. The modeling framework and the supported stepwise model development is highlighted through a case study related to air pollution control, namely, the thermal treatment of the off-gas stream in adipic acid production in order to reduce its N2O content.

General information
State: Published
Organisations: Computer Aided Process Engineering Center, Department of Chemical and Biochemical Engineering, CHEC Research Centre, Universidad Autonoma Metropolitana
Contributors: Heitzig, M., Sin, G., Sales Cruz, M., Glarborg, P., Gani, R.
Pages: 5253-5265
Publication date: 2011
Peer-reviewed: Yes

Publication information
Journal: Industrial & Engineering Chemistry Research
Volume: 50
Issue number: 9
ISSN (Print): 0888-5885
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.4 SJR 0.978 SNIP 1.203
Web of Science (2017): Impact factor 3.141
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.1 SJR 0.95 SNIP 1.155
Web of Science (2016): Impact factor 2.843
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 2.87 SJR 0.938 SNIP 1.145
Web of Science (2015): Impact factor 2.567
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 2.85 SJR 1.009 SNIP 1.287
Web of Science (2014): Impact factor 2.587
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 2.6 SJR 0.975 SNIP 1.232
Web of Science (2013): Impact factor 2.235
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2