Computation of the National Renewable Energy Laboratory Phase-VI rotor in pitch motion during standstill - DTU Orbit (18/03/2019)

Computation of the National Renewable Energy Laboratory Phase-VI rotor in pitch motion during standstill

Previously, computational fluid dynamics (CFD) computations of dynamic stall on wind turbine blades have been performed for stand still conditions with moderate success by among others the present authors. In the present work, numerical investigations are performed to illustrate the possibilities of state of the art CFD methods for this problem, including the numerical requirements as time-step and grid resolution. Additionally, the effect of different types of modeling is investigated, ranging from fully turbulent Reynolds-averaged Navier-Stokes (RANS), transitional RANS, to transitional delayed detached-eddy simulation computations. The investigation indicates that detailed information and fair agreement with measurements can be obtained.

General information
State: Published
Organisations: Aeroelastic Design, Wind Energy Division, Risø National Laboratory for Sustainable Energy, NREL National Wind Technology Center
Contributors: Sørensen, N. N., Schreck, S.
Pages: 425-442
Publication date: 2012
Peer-reviewed: Yes

Publication information
Journal: Wind Energy
Volume: 15
Issue number: 3
ISSN (Print): 1095-4244
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.18 SJR 1.051 SNIP 1.834
Web of Science (2017): Impact factor 2.938
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.37 SJR 1.079 SNIP 2.316
Web of Science (2016): Impact factor 2.725
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 3.06 SJR 1.201 SNIP 2.165
Web of Science (2015): Impact factor 2.891
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 3.42 SJR 1.209 SNIP 3.688
Web of Science (2014): Impact factor 3.069
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 2.75 SJR 1.235 SNIP 2.486
Web of Science (2013): Impact factor 2.556
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 2.36 SJR 1.062 SNIP 2.297
Web of Science (2012): Impact factor 1.436
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2