Comprehensive cluster-theory analysis of the magnetic structures and excitations in CoCl₂·2H₂O

The magnetic properties of CoCl₂·2H₂O are analyzed in the mean-field/random-phase approximation using a basis of clusters with four spins along the c-axis chains of Co ions. The model gives a unifying account of the bulk properties, the spin waves, and the higher-order cluster-spin excitations. The theory describes accurately the neutron scattering measurements of the excited doublet of the S = 3/2 Co⁺⁺ ions in both the antiferromagnetic and the paramagnetic phases. The theory has been applied by Larsen et al. [Phys. Rev. B 96, 174424 (2017)] for analyzing the quantum phase transition at a transverse field of 160 kOe and is found to agree closely with their observations.

General information
State: Published
Organisations: Department of Physics, University of Copenhagen
Contributors: Jensen, J., Larsen, J., Hansen, U. B.
Number of pages: 9
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Physical Review B
Volume: 97
Issue number: 2
Article number: 024423
ISSN (Print): 1098-0121
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.34 SJR 1.604 SNIP 1.04
Web of Science (2017): Impact factor 3.813
Web of Science (2017): Indexed yes
Scopus rating (2016): CiteScore 3.16 SJR 2.339 SNIP 1.151
Web of Science (2016): Impact factor 3.836
Web of Science (2016): Indexed yes
Scopus rating (2015): CiteScore 2.8 SJR 2.377 SNIP 1.13
Web of Science (2015): Impact factor 3.718
Web of Science (2015): Indexed yes
Scopus rating (2014): CiteScore 3.3 SJR 2.762 SNIP 1.316
Web of Science (2014): Impact factor 3.736
Web of Science (2014): Indexed yes
Scopus rating (2013): CiteScore 3.55 SJR 2.813 SNIP 1.326
Web of Science (2013): Impact factor 3.664
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
Scopus rating (2012): CiteScore 3.57 SJR 3.173 SNIP 1.378
Web of Science (2012): Impact factor 3.767
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
Scopus rating (2011): CiteScore 3.61 SJR 3.326 SNIP 1.423
Web of Science (2011): Impact factor 3.691
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
Scopus rating (2010): SJR 3.318 SNIP 1.447
Web of Science (2010): Impact factor 3.774
Web of Science (2010): Indexed yes
Web of Science (2009): Indexed yes