Compositional analysis and rheological characterization of gum tragacanth exudates from six species of Iranian Astragalus

The sugar composition and viscoelastic behaviour of Iranian gum tragacanth exuded by six species of Astragalus was investigated at a concentration of 1.3% and varying ionic strength using a controlled shear-rate rheometer. Compositional analysis of the six species of gum tragacanth by high-performance anion-exchange chromatography with pulsed amperometric detection suggested the occurrence of arabinose, xylose, glucose, galactose, fucose, rhamnose and galacturonic acid residues in the gum structure; however, the proportions of each sugar varied significantly among the gums from the different species of Astragalus, and this variation led to interesting differences in functional properties.

Rheological measurements performed on dispersions of the six species of gum tragacanth demonstrated viscoelastic properties. The mechanical spectra derived from strain sweep and frequency sweep measurements indicated that the different gum tragacanth dispersions had distinctive viscoelastic behaviours. Investigation of the viscoelastic properties of the different gum dispersions in the presence of NaCl revealed that the addition of NaCl could lead to slight to drastic decreases in the G', G'' or η^* values of the various gums. In general, the results indicated that the six varieties of gum tragacanth studied exhibited significantly different rheological properties; therefore, these different gums may find use in a variety of applications as stabilisers, thickeners, emulsifiers and suspending agents depending on their rheological behaviour.

General information
State: Published
Organisations: Center for BioProcess Engineering, Department of Chemical and Biochemical Engineering, Shahid Beheshti University of Medical Sciences
Contributors: Balaghi, S., Mohammadifar, M. A., Zargaraan, A., Ahmadi Gavlighi, H., Mohammadi, M.
Pages: 1775-1784
Publication date: 2011
Peer-reviewed: Yes

Publication information
Journal: Food Hydrocolloids
Volume: 25
Issue number: 7
ISSN (Print): 0268-005X
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 5.25 SJR 1.991 SNIP 1.892
Web of Science (2017): Impact factor 5.089
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 5.1 SJR 2.03 SNIP 2.045
Web of Science (2016): Impact factor 4.747
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 4.53 SJR 1.802 SNIP 1.924
Web of Science (2015): Impact factor 3.858
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 5.21 SJR 2.232 SNIP 2.554
Web of Science (2014): Impact factor 4.09
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 4.81 SJR 2.096 SNIP 2.256
Web of Science (2013): Impact factor 4.28
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 3.69 SJR 1.837 SNIP 2.06