Complementary analyses of aging in a commercial LiFePO4/graphite 26650 cell

In this work we investigate the electrode degradation mechanisms in a commercial 2.5 Ah LiFePO4/graphite 26650 cylindrical cell. Aged and fresh electrode samples were prepared by cycling two cells respectively five and 22 k times. Subsequently the cells were disassembled in a glovebox and the electrode samples were prepared for electrochemical testing in a 3-electrode setup, and for characterization with XRD, XPS and low-kV FIB/SEM tomography. A 1 μm thick CEI (cathode electrolyte interface) layer was observed at the electrode/electrolyte interface of the aged LiFePO4 electrode. Relative to the fresh LiFePO4 electrode, the aged electrode exhibited a larger series resistance which indicates the observed degradation layer increases the ionic resistance. In addition, micron-sized agglomerates, probably a mixture of carbonaceous material and decomposition products from the electrolyte, were observed at the electrode/electrolyte interface of the aged graphite electrode. These layers may contribute significantly to the loss of lithium inventory (LLI) in the cell, and to the loss of active material (LAM) in the graphite electrode. Low-voltage FIB/SEM tomography was used to detect local charging effects of graphite particles in the carbon electrode, an effect of poor dissipation of the electric charge to the ground after the sample interaction with the electron beam. The charging effects were primarily observed in the aged electrode and most of the locally charged particles were found to be close to the electrode/electrolyte interface, indicating a poorly percolating graphite network near this interface.

General information
Publication status: Published
Organisations: Department of Energy Conversion and Storage, Imaging and Structural Analysis, Electrochemical Materials and Interfaces, Applied Electrochemistry, Aalborg University, Uppsala University
Corresponding author: Scipioni, R.
Pages: 454-468
Publication date: 10 Sep 2018
Peer-reviewed: Yes

Publication information
Journal: Electrochimica Acta
Volume: 284
ISSN (Print): 0013-4686
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
Original language: English
Keywords: Cathode electrolyte interface, Degradation mechanisms, Electrochemical impedance spectroscopy, Focused ion beam, Li-ion battery
DOIs:
10.1016/j.electacta.2018.07.124
Source: Scopus
Source-ID: 85050697400
Research output: Contribution to journal › Journal article – Annual report year: 2018 › Research › peer-review