Comparison of phosphorus recovery from incineration and gasification sewage sludge ash - DTU Orbit (05/12/2018)

Comparison of phosphorus recovery from incineration and gasification sewage sludge ash

Incineration of sewage sludge is a common practice in many western countries. Gasification is an attractive option because of its high energy efficiency and flexibility in the usage of the produced gas. However, they both unavoidably produce sewage sludge ash (SSA), a material which is rich in phosphorus (P), but that it is commonly landfilled or used in construction materials. With current uncertainty in phosphate rock (PR) supply, P recovery from SSA has become interesting. In the present work, ashes from incineration and gasification of the same sewage sludge were compared in terms of P extractability using electrodialytic (ED) methods. The results show that comparable recovery rates of P were achieved with a single ED step for incineration SSA and a sequential combination of two ED steps for gasification SSA, which was due to a higher influence of Fe and/or Al in P solubility for the latter. A product with lower level of metallic impurities and comparable to wet process phosphoric acid (WPA) was eventually obtained from gasification SSA. Thus, gasification becomes an interesting alternative to incineration also in terms of P separation.

General information
State: Published
Organisations: Department of Civil Engineering, ARTEK, Section for Arctic Engineering and Sustainable Solutions, Department of Chemical and Biochemical Engineering, CHEC Research Centre, Roskilde University
Pages: 1251-1260
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Water Science and Technology
Volume: 75
Issue number: 5
ISSN (Print): 0273-1223
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.34 SJR 0.429 SNIP 0.574
Web of Science (2017): Impact factor 1.247
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.3 SJR 0.404 SNIP 0.637
Web of Science (2016): Impact factor 1.197
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.19 SJR 0.464 SNIP 0.594
Web of Science (2015): Impact factor 1.064
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.14 SJR 0.585 SNIP 0.683
Web of Science (2014): Impact factor 1.106
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.3 SJR 0.571 SNIP 0.701
Web of Science (2013): Impact factor 1.212
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.13 SJR 0.597 SNIP 0.659
Web of Science (2012): Impact factor 1.102
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1