Comparison of high temperature chars of wheat straw and rice husk with respect to chemistry, morphology and reactivity - DTU Orbit (16/12/2018)

Fast pyrolysis of wheat straw and rice husk was carried out in an entrained flow reactor at high temperatures (1000-1500°C). The collected char was analyzed using X-ray diffractometry, N2-adsorption, scanning electron microscopy, particle size analysis with CAMSIZER XT, 29Si and 13C solid-state nuclear magnetic resonance spectroscopy and thermogravimetric analysis to investigate the effect of inorganic matter on the char morphology and oxygen reactivity. The silicon compounds were dispersed throughout the turbostratic structure of rice husk char in an amorphous phase with a low melting temperature (z730°C), which led to the formation of a glassy char shell, resulting in a preserved particle size and shape of chars. The high alkali content in the wheat straw resulted in higher char reactivity, whereas the lower silicon content caused variations in the char shape from cylindrical to near-spherical char particles. The reactivities of pine wood and rice husk chars were similar with respect to oxidation, indicating less influence of silicon oxides on the char reactivity. © 2016 Elsevier Ltd. All rights reserved.

General information
State: Published
Organisations: Department of Chemical and Biochemical Engineering, CHEC Research Centre, Technical University of Munich, University of Copenhagen
Pages: 76-87
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Biomass and Bioenergy
Volume: 86
ISSN (Print): 0961-9534
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 4 SJR 1.235 SNIP 1.436
Web of Science (2017): Impact factor 3.358
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.71 SJR 1.198 SNIP 1.385
Web of Science (2016): Impact factor 3.219
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 4.03 SJR 1.51 SNIP 1.596
Web of Science (2015): Impact factor 3.249
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 4.36 SJR 1.865 SNIP 1.964
Web of Science (2014): Impact factor 3.394
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 4.42 SJR 1.666 SNIP 1.811
Web of Science (2013): Impact factor 3.411
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 3.66 SJR 1.516 SNIP 1.754
Web of Science (2012): Impact factor 2.975
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 4.74 SJR 1.759 SNIP 2.296
Web of Science (2011): Impact factor 3.646
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 1.914 SNIP 2.251
Web of Science (2010): Impact factor 3.84
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 1.728 SNIP 2.183
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 1.614 SNIP 2.137
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.361 SNIP 1.825
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.268 SNIP 1.991
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.214 SNIP 1.401
Scopus rating (2004): SJR 1.027 SNIP 1.665
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 0.659 SNIP 1.378
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 0.396 SNIP 0.775
Scopus rating (2001): SJR 0.455 SNIP 1.048
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 0.447 SNIP 0.958
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 0.429 SNIP 1.064
Original language: English
Keywords: Fast pyrolysis, 29Si solid-state NMR, Entrained flow reactor, Oxygen reactivity, Si bearing compounds
DOIs:
10.1016/j.biombioe.2016.01.017
Source: FindIt
Source-ID: 2291796703
Research output: Research - peer-review | Journal article – Annual report year: 2016