Comparison of Freeboard Retrieval and Ice Thickness Calculation From ALS, ASIRAS, and CryoSat-2 in the Norwegian Arctic to Field Measurements Made During the N-ICE2015 Expedition - DTU Orbit (28/01/2019)

We present freeboard measurements from airborne laser scanner (ALS), the Airborne Synthetic Aperture and Interferometric Radar Altimeter System (ASIRAS), and CryoSat-2 SIRAL radar altimeter; ice thickness measurements from both helicopter-borne and ground-based electromagnetic-sounding; and point measurements of ice properties. This case study was carried out in April 2015 during the N-ICE2015 expedition in the area of the Arctic Ocean north of Svalbard. The region is represented by deep snow up to 1.12 m and a widespread presence of negative freeboards. The main scattering surfaces from both CryoSat-2 and ASIRAS are shown to be closer to the snow freeboard obtained by ALS than to the ice freeboard measured in situ. This case study documents the complexity of freeboard retrievals from radar altimetry. We show that even under cold (below −15°C) conditions the radar freeboard can be close to the snow freeboard on a regional scale of tens of kilometers. We derived a modal sea-ice thickness for the study region from CryoSat-2 of 3.9 m compared to measured total thickness 1.7 m, resulting in an overestimation of sea-ice thickness on the order of a factor 2. Our results also highlight the importance of year-to-year regional scale information about the depth and density of the snowpack, as this influences the sea-ice freeboard, the radar penetration, and is a key component of the hydrostatic balance equations used to convert radar freeboard to sea-ice thickness.
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 2.93 SJR 2.917 SNIP 1.522
Web of Science (2012): Impact factor 3.174
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 3.03 SJR 3.018 SNIP 1.474
Web of Science (2011): Impact factor 3.021
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 3.056 SNIP 1.753
Web of Science (2010): Impact factor 3.303
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 2.85 SNIP 1.738
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 2.826 SNIP 1.529
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 2.835 SNIP 1.471
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 3.034 SNIP 1.627
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 2.855 SNIP 1.417
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 2.984 SNIP 1.643
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 2.948 SNIP 1.847
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 2.784 SNIP 1.877
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 3.86 SNIP 1.692
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 3.94 SNIP 1.845
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 3.675 SNIP 1.711
Original language: English
Electronic versions:
DOIs:
10.1002/2017JC013233

Bibliographical note
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

Source: FindIt
Source-ID: 2395845037
Research output: Research - peer-review › Journal article – Annual report year: 2018