Comparison of Fast Roll-to-Roll Flexographic, Inkjet, Flatbed, and Rotary Screen Printing of Metal Back Electrodes for Polymer Solar Cells - DTU Orbit (29/01/2019)

Comparison of Fast Roll-to-Roll Flexographic, Inkjet, Flatbed, and Rotary Screen Printing of Metal Back Electrodes for Polymer Solar Cells

The majority of polymer solar cells reported today employs processing under high vacuum for one or more of the layers in the solar cell stack. Most notably the highly conducting metal back electrode is almost exclusively applied by evaporation of the pure metal. While it is not impossible to envisage mass production of polymer solar cells using vacuum processing it does present some drawbacks in terms of both processing speed, capital investment in processing equipment technical yield and direct process energy. From this point of view it is clear that vacuum processed electrodes should be avoided and electrodes should be printable using methods that provide a high degree of accuracy and high technical yield. When considering large area polymer solar cells (i.e., not laboratory devices) a few reports have employed printable back electrodes mostly by use of silver formulations[1–4] but also carbon[5] and copper has been discussed whereas copper is unlikely to yield the necessary cost reduction and resistance to oxidation. Most reports have employed flatbed or rotary screen printing whereas other methods are available and described later on. The important question to answer is which technique is most suited for manufacture of polymer solar cell modules in terms of technical yield, materials use and processing speed? Evidently the back electrode has to be of high conductivity, which implies the use of a thick electrode. Therefore thick film printing techniques such as the screen printing techniques have proven excellent while they do present disadvantages in speed due to significant drying requirements but also they do require significant amounts of material.[2,6]

In this paper we employ four different roll-to-roll (R2R) printing methods for printing silver back electrodes for polymer solar cell modules based on the IOne process which is a fully printable, indium-tin-oxide (ITO), and vacuum free technology that provide similar performance to ITO-based polymer solar cell modules when using poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (60PCBM) as the active layer. We analyze advantages and disadvantages for each method and also outline boundaries of their use and highlight a few areas where development could lead to disruptive progress for the polymer solar cell as a technology.

General information
State: Published
Organisations: Department of Energy Conversion and Storage, Functional organic materials
Contributors: Hösel, M., Søndergaard, R. R., Angmo, D., Krebs, F. C.
Pages: 995–1001
Publication date: 2013
Peer-reviewed: Yes

Publication information
Journal: Advanced Engineering Materials
Volume: 15
Issue number: 10
ISSN (Print): 1438-1656
Ratings:
 - BFI (2019): BFI-level 1
 - Web of Science (2019): Indexed yes
 - BFI (2018): BFI-level 1
 - Web of Science (2018): Indexed yes
 - BFI (2017): BFI-level 1
 - Scopus rating (2017): CiteScore 2.47 SJR 0.924 SNIP 1.116
 - Web of Science (2017): Impact factor 2.576
 - Web of Science (2017): Indexed yes
 - BFI (2016): BFI-level 1
 - Scopus rating (2016): CiteScore 2.07 SJR 0.834 SNIP 1.125
 - Web of Science (2016): Impact factor 2.319
 - Web of Science (2016): Indexed yes
 - BFI (2015): BFI-level 1
 - Scopus rating (2015): CiteScore 1.82 SJR 0.806 SNIP 1.028
 - Web of Science (2015): Impact factor 1.817
 - Web of Science (2015): Indexed yes
 - BFI (2014): BFI-level 1
 - Scopus rating (2014): CiteScore 1.66 SJR 0.802 SNIP 1.055
 - Web of Science (2014): Impact factor 1.758
 - Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.59 SJR 0.737 SNIP 0.84
Web of Science (2013): Impact factor 1.508
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.46 SJR 0.778 SNIP 0.951
Web of Science (2012): Impact factor 1.608
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 1.58 SJR 0.836 SNIP 1.03
Web of Science (2011): Impact factor 1.185
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.098 SNIP 1.151
Web of Science (2010): Impact factor 1.746
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.289 SNIP 1.092
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.266 SNIP 1.175
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.015 SNIP 1.154
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.04 SNIP 1.382
Scopus rating (2005): SJR 0.897 SNIP 1.164
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 0.77 SNIP 0.951
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 0.985 SNIP 1.387
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 1.566 SNIP 1.111
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 0.689 SNIP 1.183
Scopus rating (2000): SJR 0.201 SNIP 0.146

Original language: English
DOIs:
10.1002/adem.201300011

Bibliographical note
This work was supported by the the EU-Indian framework of the “Largecells” project as part of the European Commission's Seventh Framework Programme (FP7/2007-2013, grant no. 261936).

Source: dtu
Source-ID: u::7754
Research output: Research - peer-review › Journal article – Annual report year: 2013