Comparing urban form correlations of the travel patterns of older and younger adults - DTU Orbit (28/12/2018)

Comparing urban form correlations of the travel patterns of older and younger adults

Using disaggregated data from the Danish National Travel Survey conducted between 2006 - 2011, this study compares the travel patterns of older (65 – 84 years of age) and younger (18 – 64 years of age) adults regarding land use, socio-economic conditions and urban structures. The results highlight significant differences between travel patterns and their urban form correlates for the older and younger adult populations. Spatial variables such as density and regional accessibility have different and potentially reverse associations with travel among older adults. The car use of older adults is not substituted by other modes in high-density settings, as is the case for younger adults. Older adults do not respond to high regional accessibility by reducing distance traveled, but travel longer and are also more likely to continue using a car in high-access conditions. Spatial structural conditions have the potential to reinforce the need to use private cars among older adults as they attempt to maintain their independent travel and mobility. Older persons are a growing demographic group and thus, the implications of this paper for planning and policies targeting modal shift are significant. How population aging may contribute to car travel saturation or to peak travel requires further investigation.

General information
State: Published
Organisations: Department of Transport, Transport policy and behaviour, The Danish Center for Social Science Research, University of Copenhagen
Contributors: Meza, M. J. F., Nielsen, T. A. S., Siren, A. K.
Number of pages: 10
Pages: 10-20
Publication date: 2014
Peer-reviewed: Yes

Publication information
Journal: Transport Policy
Volume: 35
ISSN (Print): 0967-070X
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 2.93 SJR 1.51 SNIP 1.675
Web of Science (2017): Impact factor 2.512
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 2.65 SJR 1.348 SNIP 1.715
Web of Science (2016): Impact factor 2.269
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 2.36 SJR 1.403 SNIP 1.479
Web of Science (2015): Impact factor 1.522
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 2.44 SJR 1.458 SNIP 1.835
Web of Science (2014): Impact factor 1.492
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 2.25 SJR 1.579 SNIP 1.925
Web of Science (2013): Impact factor 1.718
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 2.01 SJR 1.247 SNIP 1.64
Web of Science (2012): Impact factor 1.541
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes