Comparative studies of photochemical cross-linking methods for stabilizing the bulk hetero-junction morphology in polymer solar cells

We are here presenting a comparative study between four different types of functionalities for cross-linking. With relatively simple means bromine, azide, vinyl and oxetane could be incorporated into the side chains of the low band-gap polymer TQ1. Cross-linking of the polymers was achieved by UV-light illumination to give solvent resistant films and reduced phase separation and growth of PCBM crystallites in polymer:PCBM films. The stability of solar cells based on the cross-linked polymers was tested under various conditions. This study showed that cross-linking can improve morphological stability but that it has little influence on the photochemical stability which is also decisive for stable device operation under constant illumination conditions.

General information
State: Published
Organisations: Department of Energy Conversion and Storage, Functional organic materials, Imaging and Structural Analysis
Contributors: Carlé, J. E., Andreasen, B., Tromholt, T., Vesterager Madsen, M., Norman, K., Jørgensen, M., Krebs, F. C.
Pages: 24417-24423
Publication date: 2012
Peer-reviewed: Yes

Publication Information
Journal: Journal of Materials Chemistry
Volume: 22
Issue number: 46
ISSN (Print): 0959-9428
Ratings:
Web of Science (2017): Indexed yes
BFI (2015): BFI-level 2
BFI (2014): BFI-level 2
BFI (2013): BFI-level 2
Web of Science (2013): Impact factor 6.626
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 2
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Web of Science (2011): Impact factor 5.968
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Web of Science (2010): Impact factor 5.101
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Web of Science (2008): Indexed yes
Web of Science (2007): Indexed yes
Web of Science (2006): Indexed yes
Web of Science (2005): Indexed yes
Web of Science (2004): Indexed yes
Web of Science (2003): Indexed yes
Web of Science (2002): Indexed yes
Web of Science (2001): Indexed yes
Web of Science (2000): Indexed yes
Original language: English
Electronic versions:
This work has been supported by the Danish Strategic Research Council (2104-07-0022), EUDP (j.no. 64009-0050 and 64011-0002), the Danish National Research Foundation, and from PVERA-NET (project acronym POLYSTAR).

Source: dtu
Source-ID: n:oai:DTIC-ART:rsc/373521596::20910
Research output: Research - peer-review; Journal article – Annual report year: 2012