We are here presenting a comparative study between four different types of functionalities for cross-linking. With relatively simple means bromine, azide, vinyl and oxetane could be incorporated into the side chains of the low band-gap polymer TQ1. Cross-linking of the polymers was achieved by UV-light illumination to give solvent resistant films and reduced phase separation and growth of PCBM crystallites in polymer:PCBM films. The stability of solar cells based on the cross-linked polymers was tested under various conditions. This study showed that cross-linking can improve morphological stability but that it has little influence on the photochemical stability which is also decisive for stable device operation under constant illumination conditions.
Bibliographical note
This work has been supported by the Danish Strategic Research Council (2104-07-0022), EUDP (j.no. 64009-0050 and 64011-0002), the Danish National Research Foundation, and from PVERA-NET (project acronym POLYSTAR).

Source: dtu
Source-ID: n:oai:DTIC-ART:rsc/373521596::20910
Research output: Research - peer-review : Journal article – Annual report year: 2012