Compaction of amorphous iron–boron powder

Large scale practical use of bulk amorphous alloys requires the capability of molding the material to a desired design, for instance by compaction of an amorphous powder. This is a difficult task because the sintering temperature is limited by the crystallization temperature of the alloy. Here we report on attempts to compact amorphous iron–boron particles prepared by chemical reduction of Fe(II) ions in aqueous solution by NaBH4 (Ref. 2). The particles prepared in this way are pyrophoric, but can be passivated. The small particle size (10–100 nm), characteristic of this preparation technique, should facilitate a compaction. The passivation layer, however, impedes a compaction. Isostatic pressing at 540 K at a pressure of 200 MPa clearly illustrated this; pellets pressed from passivated powder were much more brittle than pellets pressed from unpassivated powder. The density of the pellets was very low ([approximately-equal-to]25% of the density of bulk FeB). We have designed a die for uniaxial pressing in which the compaction can be performed without exposing the powder to air and have obtained densities larger than 60% of that of bulk FeB. We have reported studies of the dependence of density and structure on compaction pressure and compaction temperature. Journal of Applied Physics is copyrighted by The American Institute of Physics.

General information
State: Published
Organisations: Quantum Physics and Information Technology, Department of Physics
Contributors: Hendriksen, P. V., Mørup, S., Koch, C., Linderoth, S., Bødker, F.
Pages: 5607
Publication date: 1993
Peer-reviewed: Yes

Publication information
Journal: Journal of Applied Physics
Volume: 73
Issue number: 10
ISSN (Print): 0021-8979
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.03 SJR 0.739 SNIP 0.953
Web of Science (2017): Impact factor 2.176
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.72 SJR 0.906 SNIP 0.977
Web of Science (2016): Impact factor 2.068
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.57 SJR 0.821 SNIP 0.996
Web of Science (2015): Impact factor 2.101
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.04 SJR 1.039 SNIP 1.197
Web of Science (2014): Impact factor 2.183
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.24 SJR 1.155 SNIP 1.286
Web of Science (2013): Impact factor 2.185
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.13 SJR 1.312 SNIP 1.291
Web of Science (2012): Impact factor 2.21
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1