Community benefits from offshore renewables: The relationship between different understandings of impact, community, and benefit - DTU Orbit (28/12/2018)

Community benefits from offshore renewables: The relationship between different understandings of impact, community, and benefit

This paper presents the findings of a research project evaluating community benefit models for offshore renewables. We identify and analyse UK and international case studies of different forms of community benefit, and provide evidence of how such benefits are delivered. In particular we consider the key relationship between the identification of communities, perception of impact, and the apportionment of benefits. In doing so, we develop a range of different definitions of ‘community’, ‘benefit’, and ‘impact’ when considering community benefits. We propose that the way in which community, benefit, and impact are understood is crucial in determining whether or how benefits should be apportioned and delivered; and that these definitions are closely connected to each other. We develop a new series of typologies as a way to understand this. Finally, we assess different mechanisms and schemes of community benefits to identify good practice and key points of learning for policy and planning.

General information
State: Published
Organisations: Department of Wind Energy, Integration & Planning, University of Edinburgh
Contributors: Rudolph, D. P., Haggett, C., Aitken, M.
Publication date: 2018
Peer-reviewed: Yes

Publication Information
Journal: Environment and Planning C: Government and Policy
Volume: 36
Issue number: 1
ISSN (Print): 0263-774X
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 2.01 SJR 0.965 SNIP 0.89
Web of Science (2017): Impact factor 1.864
Web of Science (2017): Indexed yes
Scopus rating (2016): CiteScore 1.59 SJR 0.934 SNIP 0.947
Web of Science (2016): Impact factor 1.771
Scopus rating (2015): CiteScore 2.65 SJR 1.509 SNIP 1.496
Web of Science (2015): Impact factor 1.664
Scopus rating (2014): CiteScore 1.73 SJR 1.04 SNIP 1.297
Web of Science (2014): Impact factor 1.535
Scopus rating (2013): CiteScore 1.58 SJR 0.862 SNIP 1.064
Web of Science (2013): Impact factor 1.22
Scopus rating (2012): CiteScore 1.37 SJR 0.87 SNIP 1.018
Web of Science (2012): Impact factor 1.016
Scopus rating (2011): CiteScore 1.44 SJR 0.98 SNIP 1.201
Web of Science (2011): Impact factor 1.161
Scopus rating (2010): SJR 1.05 SNIP 1.106
Web of Science (2010): Impact factor 1.126
Scopus rating (2009): SJR 0.848 SNIP 1.181
Scopus rating (2008): SJR 0.628 SNIP 1.064
Scopus rating (2007): SJR 0.628 SNIP 1.017
Scopus rating (2006): SJR 0.68 SNIP 0.805
Scopus rating (2005): SJR 0.645 SNIP 0.534
Scopus rating (2004): SJR 0.786 SNIP 0.819
Scopus rating (2003): SJR 0.498 SNIP 0.779
Scopus rating (2002): SJR 0.528 SNIP 0.834
Scopus rating (2001): SJR 0.8 SNIP 0.881
Scopus rating (2000): SJR 0.403 SNIP 1.19
Scopus rating (1999): SJR 0.455 SNIP 0.652