Communication: Strong excitonic and vibronic effects determine the optical properties of Li₂O₂

Publication: Research - peer-reviewJournal article – Annual report year: 2011

View graph of relations

The band structure and optical absorption spectrum of lithium peroxide (Li2O2) is calculated from first-principles using the G0W0 approximation and the Bethe-Salpeter equation, respectively. A strongly localized (Frenkel type) exciton corresponding to the π*→σ* transition on the O2 −2 peroxide ion gives rise to a narrow absorption peak around 1.2 eV below the calculated bandgap of 4.8 eV. In the excited state, the internal O2 −2 bond is significantly weakened due to the population of the σ* orbital. As a consequence, the bond is elongated by almost 0.5 Å leading to an extreme Stokes shift of 2.6 eV. The strong vibronic coupling entails significant broadening of the excitonic absorption peak in good agreement with diffuse reflectance data on Li2O2 which shows a rather featureless spectrum with an absorption onset around 3.0 eV. These results should be important for understanding the origin of the high potential losses and low current densities, which are presently limiting the performance of Li-air batteries.
Original languageEnglish
JournalJournal of Chemical Physics
Issue number12
Pages (from-to)-
StatePublished - 2011

Bibliographical note

© 2011 American Institute of Physics

CitationsWeb of Science® Times Cited: 30
Download as:
Download as PDF
Select render style:
Download as HTML
Select render style:
Download as Word
Select render style:

Download statistics

No data available

ID: 6242940