Combined spectroscopy and microscopy of supported MoS2 nanoparticles

Publication: Research - peer-reviewJournal article – Annual report year: 2009

View graph of relations

Supported molybdenum-sulfide nanoparticles are known catalysts for petroleum hydrodesulfurization as well as for electrochemical hydrogen evolution. In this study, we investigate molybdenum-sulfide nanoparticles supported on Au(111) using X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM), aiming to correlate spectroscopically determined chemical states with atomically resolved nanostructure. The results of this study allow us to conclude the following: (1) the XPS results from our model system are in good agreement with previously published results on supported MoS2 for industrial applications, validating in part the fidelity of the model system; (2) STM reveals that catalytically active, crystalline MoS2 nanoparticles exhibiting the well-known metallic edge state are only present after a post-deposition annealing step in the synthesis procedure, without which the particles exhibit amorphous shapes and incomplete sulfidation; and (3) the sulfided nanoparticles are found to be stable in air at room temperature.
Original languageEnglish
JournalSurface Science
Publication date2009
Volume603
Issue9
Pages1182-1189
ISSN0039-6028
DOIs
StatePublished
CitationsWeb of Science® Times Cited: 14

Keywords

  • Supported nanoparticle, X-ray photoelectron spectroscopy, Au(111), Scanning tunneling microscopy, Molybdenum-sulfide
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 3576112