Combined Active and Reactive Power Control of Wind Farms based on Model Predictive Control - DTU Orbit (21/05/2019)

Combined Active and Reactive Power Control of Wind Farms based on Model Predictive Control

This paper proposes a combined wind farm controller based on Model Predictive Control (MPC). Compared with the conventional decoupled active and reactive power control, the proposed control scheme considers the significant impact of active power on voltage variations due to the low X=R ratio of wind farm collector systems. The voltage control is improved. Besides, by coordination of active and reactive power, the Var capacity is optimized to prevent potential failures due to Var shortage, especially when the wind farm operates close to its full load. An analytical method is used to calculate the sensitivity coefficients to improve the computation efficiency and overcome the convergence problem. Two control modes are designed for both normal and emergency conditions. A wind farm with 20 wind turbines was used to verify the proposed combined control scheme.

General information

Publication status: Published
Contributors: Zhao, H., Wu, Q., Wang, J., Liu, Z., Shahidehpour, M., Xue, Y.
Number of pages: 11
Pages: 1177-1187
Publication date: 2017
Peer-reviewed: Yes

Publication information

Journal: IEEE Transactions on Energy Conversion
Volume: 32
Issue number: 3
ISSN (Print): 0885-8969
Ratings:
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 5.42 SJR 1.377 SNIP 2.124
Web of Science (2017): Impact factor 3.767
Web of Science (2017): Indexed yes
Original language: English
Electronic versions:
Combined_Active_and_Reactive.pdf
DOIs:
10.1109/TEC.2017.2654271
Source: PublicationPreSubmission
Source-ID: 128219326
Research output: Contribution to journal › Journal article – Annual report year: 2017 › Research › peer-review