Comammox Nitrospira are abundant ammonia oxidizers in diverse groundwater-fed rapid sand filter communities - DTU Orbit (27/11/2018)

Comammox Nitrospira are abundant ammonia oxidizers in diverse groundwater-fed rapid sand filter communities

The recent discovery of completely nitrifying Nitrospira demands a re-examination of nitrifying environments to evaluate their contribution to nitrogen cycling. To approach this challenge, tools are needed to detect and quantify comammox Nitrospira. We present primers for the simultaneous quantification and diversity assessment of both comammox Nitrospira clades. The primers cover a wide range of comammox diversity, spanning all available high quality sequences. We applied these primers to 12 groundwater-fed rapid sand filters, and found comammox Nitrospira to be abundant in all filters. Clade B comammox comprise the majority (~75%) of comammox abundance in all filters. Nitrosomonadaceae were present in all filters, although at low abundance (mean=1.8%). Ordination suggests that temperature impacts the structure of nitrifying communities, and in particular that increasing temperature favours Nitrospira. The nitrogen content of the filter material, sulfate concentration and surface ammonium loading rates shape the structure of the comammox guild in the filters. This work provides an assay for simultaneous detection and diversity assessment of clades A and B comammox Nitrospira, expands our current knowledge of comammox Nitrospira diversity and demonstrates a key role for comammox Nitrospira in nitrification in groundwater-fed biofilters.

General information

State: Published
Organisations: Department of Environmental Engineering, Water Technologies, Department of Micro- and Nanotechnology, Surface Engineering, Department of Applied Mathematics and Computer Science, Technical University of Denmark
Pages: 1002-1015
Publication date: 2018
Peer-reviewed: Yes

Publication information

Journal: Environmental Microbiology
Volume: 20
Issue number: 3
ISSN (Print): 1462-2912
Ratings:
 - BFI (2018): BFI-level 2
 - Web of Science (2018): Indexed yes
 - BFI (2017): BFI-level 2
 - Scopus rating (2017): CiteScore 4.83 SJR 2.209 SNIP 1.31
 - Web of Science (2017): Impact factor 4.974
 - Web of Science (2017): Indexed yes
 - BFI (2016): BFI-level 2
 - Scopus rating (2016): CiteScore 5.02 SJR 2.377 SNIP 1.383
 - Web of Science (2016): Impact factor 5.395
 - Web of Science (2016): Indexed yes
 - BFI (2015): BFI-level 2
 - Scopus rating (2015): CiteScore 5.61 SJR 3.02 SNIP 1.571
 - Web of Science (2015): Impact factor 5.932
 - Web of Science (2015): Indexed yes
 - BFI (2014): BFI-level 2
 - Scopus rating (2014): CiteScore 5.6 SJR 2.862 SNIP 1.599
 - Web of Science (2014): Impact factor 6.201
 - Web of Science (2014): Indexed yes
 - BFI (2013): BFI-level 2
 - Scopus rating (2013): CiteScore 6.37 SJR 3.273 SNIP 1.823
 - ISI indexed (2013): ISI indexed yes
 - Web of Science (2013): Indexed yes
 - BFI (2012): BFI-level 2
 - Scopus rating (2012): CiteScore 5.94 SJR 3.165 SNIP 1.639
 - Web of Science (2012): Impact factor 5.756
 - ISI indexed (2012): ISI indexed yes