Collisional transport across the magnetic field in drift-fluid models - DTU Orbit (31/12/2018)

Collisional transport across the magnetic field in drift-fluid models

Drift ordered fluid models are widely applied in studies of low-frequency turbulence in the edge and scrape-off layer regions of magnetically confined plasmas. Here, we show how collisional transport across the magnetic field is self-consistently incorporated into drift-fluid models without altering the drift-fluid energy integral. We demonstrate that the inclusion of collisional transport in drift-fluid models gives rise to diffusion of particle density, momentum, and pressures in drift-fluid turbulence models and, thereby, obviates the customary use of artificial diffusion in turbulence simulations. We further derive a computationally efficient, two-dimensional model, which can be time integrated for several turbulence de-correlation times using only limited computational resources. The model describes interchange turbulence in a two-dimensional plane perpendicular to the magnetic field located at the outboard midplane of a tokamak. The model domain has two regions modeling open and closed field lines. The model employs a computational expedient model for collisional transport. Numerical simulations show good agreement between the full and the simplified model for collisional transport.

General information
State: Published
Organisations: Department of Physics, Plasma Physics and Fusion Energy
Contributors: Madsen, J., Naulin, V., Nielsen, A. H., Rasmussen, J. J.
Number of pages: 14
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Physics of Plasmas
Volume: 23
Issue number: 3
Article number: 032306
ISSN (Print): 1070-664X
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.17 SJR 0.576 SNIP 0.682
Web of Science (2017): Impact factor 1.941
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.08 SJR 0.999 SNIP 1.052
Web of Science (2016): Impact factor 2.115
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.02 SJR 0.874 SNIP 0.908
Web of Science (2015): Impact factor 2.207
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.69 SJR 1.153 SNIP 1.195
Web of Science (2014): Impact factor 2.142
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.7 SJR 1.114 SNIP 1.224
Web of Science (2013): Impact factor 2.249
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.83 SJR 1.439 SNIP 1.255
Web of Science (2012): Impact factor 2.376
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 2.09 SJR 1.221 SNIP 1.27
Web of Science (2011): Impact factor 2.147
ISI indexed (2011): Indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.46 SNIP 1.283
Web of Science (2010): Impact factor 2.32
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.592 SNIP 1.317
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.547 SNIP 1.363
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.483 SNIP 1.184
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.452 SNIP 1.454
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.4 SNIP 1.448
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 1.795 SNIP 1.66
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 1.678 SNIP 1.536
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 1.706 SNIP 0.972
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 1.691 SNIP 1.497
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 1.773 SNIP 1.326
Scopus rating (1999): SJR 1.754 SNIP 1.343
Original language: English
Electronic versions:
1.4943199.pdf. Embargo ended: 16/03/2017
DOIs:
10.1063/1.4943199
Source: FindIt
Source-ID: 2302962425
Research output: Research - peer-review › Journal article – Annual report year: 2016