Collective Thomson scattering model for arbitrarily drifting bi-Maxwellian velocity distributions - DTU Orbit (05/05/2019)

Collective Thomson scattering model for arbitrarily drifting bi-Maxwellian velocity distributions
In this paper we derive the equations of collective Thomson scattering (CTS) for an arbitrarily drifting magnetized plasma described by a bi-Maxwellian distribution. The model allows the treatment of anisotropic plasma with different parallel and perpendicular temperatures (with respect to the magnetic field) as well as parallel and perpendicular plasma drift. As could be expected, parallel observation directions are most sensitive to the parallel temperature and drift, whereas perpendicular observation directions are most sensitive to the perpendicular temperature and the perpendicular drift along the observation direction. The perpendicular drift can be related to the radial electric field. Measurements with a spectral resolution better than 0.5 MHz are necessary for the inference of the radial electric field. This spectral resolution and the required scattering geometry are attainable with the current setup of the CTS diagnostic on Wendelstein 7-X.

General information
Publication status: Published
Organisations: Department of Physics, Eindhoven University of Technology, Max-Planck Institut fur Plasma Physik
Corresponding author: Abramovic, I.
Contributors: Abramovic, I., Salewski, M., Moseev, D.
Number of pages: 9
Publication date: 2019
Peer-reviewed: Yes

Publication information
Journal: A I P Advances
Volume: 9
Issue number: 3
Article number: 035252
ISSN (Print): 2158-3226
Ratings:
Web of Science (2019): Indexed yes
Original language: English
Electronic versions:
Abramovic2019AIPAdv.pdf
DOIs:
10.1063/1.5088949
Research output: Contribution to journal › Journal article – Annual report year: 2019 › Research › peer-review