Cold pulse and rotation reversals with turbulence spreading and residual stress

Transport modeling based on inclusion of turbulence spreading and residual stresses shows internal rotation reversals and polarity reversal of cold pulses, with a clear indication of nonlocal transport effects due to fast spreading in the turbulence intensity field. The effects of turbulence spreading and residual stress are calculated from the gradient of the turbulence intensity. In the model presented in this paper, the flux is carried by the turbulence intensity field, which in itself is subject to radial transport effects. The pulse polarity inversion and the rotation profile reversal positions are close to the radial location of the stable/unstable transition. Both effects have no direct explanation within the framework of classical transport modeling, where the fluxes are related directly to the linear growth rates, the turbulence intensity profile is not considered and the corresponding residual stress is absent. Our simulations are in qualitative agreement with measurements from ohmically heated plasmas. Rotation reversal at a finite radius is found in situations not displaying saturated confinement, which we identify as situations where the plasma is nearly everywhere unstable. As an additional and new effect, the model predicts a perturbation of the velocity profile following a cold pulse from the edge. This allows direct experimental confirmation of both the existence of residual stress caused by turbulence intensity profiles and fundamental ideas of transport modeling presented here. Published by AIP Publishing.

General information
State: Published
Organisations: Department of Physics, Plasma Physics and Fusion Energy, Chinese Academy of Sciences, Swiss Federal Institute of Technology Lausanne
Contributors: Hariri, F., Naulin, V., Rasmussen, J. J., Xu, G. S., Yan, N.
Number of pages: 8
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Physics of Plasmas
Volume: 23
Issue number: 5
Article number: 052512
ISSN (Print): 1070-664X
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.17 SJR 0.576 SNIP 0.682
Web of Science (2017): Impact factor 1.941
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.08 SJR 0.999 SNIP 1.052
Web of Science (2016): Impact factor 2.115
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.02 SJR 0.874 SNIP 0.908
Web of Science (2015): Impact factor 2.207
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.69 SJR 1.153 SNIP 1.195
Web of Science (2014): Impact factor 2.142
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.7 SJR 1.114 SNIP 1.224
Web of Science (2013): Impact factor 2.249
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.83 SJR 1.439 SNIP 1.255
Web of Science (2012): Impact factor 2.376
ISI indexed (2012): ISI indexed yes