Cohesive cracked-hinge model for simulation of fracture in one-way slabs on grade

Numerical analysis of slab on grade structures subjected to mechanical loads is a complex matter often requiring computationally expensive models. In order to develop a simplified and general concept for non-linear analysis of slab on grade structures, this paper presents a cohesive cracked-hinge model aimed at the analysis of the bending fracture of the cemented material. The model is based on the fracture mechanics concepts of the fictitious crack model with a linear stress–crack opening relationship. Moreover, the paper presents a two-parameter spring foundation model applied to realistically capture the continuity in the supporting medium. The functionality of the proposed model is compared to numerical analysis with application of the more conventional cohesive zone model. The results obtained show that the methodology is a attractive and powerful one well-suited for practical use and further development.

General information
State: Accepted/In press
Organisations: Department of Civil Engineering, Section for Structural Engineering
Contributors: Skar, A., Poulsen, P. N., Olesen, J. F.
Number of pages: 15
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: The International Journal of Pavement Engineering
ISSN (Print): 1029-8436
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.64 SJR 0.869 SNIP 1.381
Web of Science (2017): Impact factor 2.322
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.36 SJR 0.824 SNIP 1.56
Web of Science (2016): Impact factor 1.832
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.03 SJR 0.519 SNIP 1.01
Web of Science (2015): Impact factor 0.877
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.01 SJR 0.674 SNIP 1.298
Web of Science (2014): Impact factor 0.706
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.13 SJR 1.034 SNIP 1.691
Web of Science (2013): Impact factor 1.108
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 0.88 SJR 0.678 SNIP 1.461
Web of Science (2012): Impact factor 0.745
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 0.61 SJR 0.514 SNIP 1.053
Web of Science (2011): Impact factor 0.402
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.533 SNIP 0.914
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.632 SNIP 1.5
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.517 SNIP 1.597
Scopus rating (2007): SJR 0.625 SNIP 0.955