Coherent structures in wave boundary layers. Part 2. Solitary motion

Publication: Research - peer-reviewJournal article – Annual report year: 2010

View graph of relations

This study continues the investigation of wave boundary layers reported by Carstensen, Sumer & Fredsøe (J. Fluid Mech., 2010, part 1 of this paper). The present paper summarizes the results of an experimental investigation of turbulent solitary wave boundary layers, simulated by solitary motion in an oscillating water tunnel. Two kinds of measurements were made: bed shear stress measurements and velocity measurements. The experiments show that the solitary-motion boundary layer experiences three kinds of flow regimes as the Reynolds number is increased: (i) laminar regime; (ii) laminar regime where the boundary-layer flow experiences a regular array of vortex tubes near the bed over a short period of time during the deceleration stage; and (iii) transitional regime characterized with turbulent spots, revealed by single/multiple, or, sometimes, quite dense spikes in the bed shear stress traces. Supplementary synchronized flow visualization tests confirmed the presence of the previously mentioned flow features. Information related to flow resistance are also given in the paper.
Original languageEnglish
JournalJournal of Fluid Mechanics
Publication date2010
Volume646
Pages207-231
ISSN0022-1120
DOIs
StatePublished
CitationsWeb of Science® Times Cited: 15
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 5106437