Coherent laser phase retrieval in the presence of measurement imperfections and incoherent light - DTU Orbit (12/11/2017)

Coherent laser phase retrieval in the presence of measurement imperfections and incoherent light

Phase retrieval is a powerful numerical method that can be used to determine the wavefront of laser beams based only on intensity measurements, without the use of expensive, low-resolution specialized wavefront sensors such as Shack–Hartmann sensors. However, phase retrieval techniques generally suffer from poor convergence and fidelity when the input measurements contain electronic or optical noise and/or an incoherent intensity contribution overlapped with the otherwise spatially coherent laser beam. Here, we present an implementation of a modified version of the standard multiple-plane Gerchberg–Saxton algorithm and demonstrate that it is highly successful at extracting the intensity profile and wavefront of the spatially coherent part of the light from various lasers, including tapered laser diodes, at a very high fidelity despite the presence of incoherent light and noise.

General information
State: Published
Organisations: Department of Photonics Engineering, Diode Lasers and LED Systems
Authors: Hansen, A. K. (Intern)
Pages: 7341-7345
Publication date: 10 Sep 2017
Main Research Area: Technical/natural sciences

Publication information
Journal: Applied Optics
Volume: 56
Issue number: 26
ISSN (Print): 1559-128X
Ratings:
BFI (2017): BFI-level 1
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.61 SJR 0.633 SNIP 1.095
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 0.826 SNIP 1.225 CiteScore 1.66
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 1.066 SNIP 1.534 CiteScore 2.04
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 0.991 SNIP 1.616 CiteScore 1.98
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): SJR 1.046 SNIP 1.496 CiteScore 1.79
ISI indexed (2012): ISI indexed no
BFI (2011): BFI-level 1
Scopus rating (2011): SJR 1.044 SNIP 1.777 CiteScore 1.92
ISI indexed (2011): ISI indexed no
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.082 SNIP 1.636
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 1.222 SNIP 1.71
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 1.334 SNIP 1.711
Web of Science (2008): Indexed yes
<table>
<thead>
<tr>
<th>Year</th>
<th>Scopus Rating (SJR)</th>
<th>Scopus Rating (SNIP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>1.216</td>
<td>1.613</td>
</tr>
<tr>
<td>2006</td>
<td>1.135</td>
<td>1.748</td>
</tr>
<tr>
<td>2005</td>
<td>1.192</td>
<td>1.767</td>
</tr>
<tr>
<td>2004</td>
<td>1.053</td>
<td>1.889</td>
</tr>
<tr>
<td>2003</td>
<td>1.236</td>
<td>1.679</td>
</tr>
<tr>
<td>2002</td>
<td>1.221</td>
<td>1.922</td>
</tr>
<tr>
<td>2001</td>
<td>1.424</td>
<td>1.724</td>
</tr>
<tr>
<td>2000</td>
<td>1.102</td>
<td>1.04</td>
</tr>
<tr>
<td>1999</td>
<td>2.032</td>
<td>0.99</td>
</tr>
</tbody>
</table>

Original language: English

DOIs:
10.1364/AO.56.007341

Source: Scopus

Source-ID: 85029078472

Publication: Research - peer-review → Journal article – Annual report year: 2017