CO hydrogenation to methanol on Cu–Ni catalysts: Theory and experiment

Publication: Research - peer-reviewJournal article – Annual report year: 2012

View graph of relations

We present density functional theory (DFT) calculations for CO hydrogenation on different transition metal surfaces. Based on the calculations, trends are established over the different monometallic surfaces, and scaling relations of adsorbates and transition states that link their energies to only two descriptors, the carbon oxygen binding energies, are constructed. A micro-kinetic model of CO hydrogenation is developed and a volcano-shaped relation based on the two descriptors is obtained for methanol synthesis. A large number of bimetallic alloys with respect to the two descriptors are screened, and CuNi alloys of different surface composition are identified as potential candidates. These alloys, proposed by the theoretical predictions, are prepared using an incipient wetness impregnation method and tested in a high-pressure fixed-bed reactor at 100bar and 250–300°C. The activity based on surface area of the active material is comparable to that of the industrially used Cu/ZnO/Al2O3 catalyst. We employ a range of characterization tools such as inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis, in situ X-ray diffraction (XRD) and in situ transmission electron microscope (TEM) to identify the structure of the catalysts.

Original languageEnglish
JournalJournal of Catalysis
Volume293
Pages (from-to)51-60
ISSN0021-9517
DOIs
StatePublished - 2012
Peer-reviewedYes
CitationsWeb of Science® Times Cited: 38

Keywords

  • CO hydrogenation, Methanol synthesis, DFT calculations, Copper, Nickel, Screening, Scaling, Brønsted–Evans–Polanyi relations
Download as:
Download as PDF
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
Word

ID: 10411289