Clustering-based analysis for residential district heating data

The wide use of smart meters enables collection of a large amount of fine-granular time series, which can be used to improve the understanding of consumption behavior and used for consumption optimization. This paper presents a clustering-based knowledge discovery in databases method to analyze residential heating consumption data and evaluate information included in national building databases. The proposed method uses the K-means algorithm to segment consumption groups based on consumption intensity and representative patterns and ranks the groups according to daily consumption. This paper also examines the correlation between energy intensity and the characteristics of buildings and occupants, load profiles of households, consumption behavior changes over time, and consumption variability. The results show that the majority of the customers can be represented by fairly constant load profiles. Calendar context has an impact not only on the patterns but also on the consumption intensity and user behaviors. The variability studies show that consumption patterns are serially correlated, the customers with high energy consumption have lower variability, and the consumption is more stable over time. These findings will be valuable for district heating utilities and energy planners to optimize their operations, design demand-side management strategies, and develop targeting energy-efficiency programs or policies.

General information
State: Published
Organisations: Department of Civil Engineering, Section for Indoor Climate and Building Physics, Department of Management Engineering, Systems Analysis, Section for Building Energy
Pages: 840-850
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Energy Conversion and Management
Volume: 165
ISSN (Print): 0196-8904
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 6.85 SJR 2.537 SNIP 2.233
Web of Science (2017): Impact factor 6.377
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 6.04 SJR 2.232 SNIP 2.109
Web of Science (2016): Impact factor 5.589
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 5.24 SJR 2.023 SNIP 2.079
Web of Science (2015): Impact factor 4.801
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 5.35 SJR 1.789 SNIP 2.791
Web of Science (2014): Impact factor 4.38
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 4.49 SJR 1.613 SNIP 2.534
Web of Science (2013): Impact factor 3.59
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 3.72 SJR 1.674 SNIP 2.242
Web of Science (2012): Impact factor 2.775
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 3.03 SJR 1.24 SNIP 1.82
Web of Science (2011): Impact factor 2.216
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.35 SNIP 1.735
Web of Science (2010): Impact factor 2.072
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.302 SNIP 1.798
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.471 SNIP 1.886
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.186 SNIP 1.807
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.294 SNIP 1.797
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.542 SNIP 1.769
Scopus rating (2004): SJR 1.043 SNIP 1.467
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 0.879 SNIP 1.382
Scopus rating (2002): SJR 0.972 SNIP 1.467
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 0.794 SNIP 0.86
Scopus rating (2000): SJR 0.568 SNIP 0.72
Scopus rating (1999): SJR 0.512 SNIP 0.731
Original language: English
DOIs:
10.1016/j.enconman.2018.03.015
Source: FindIt
Source-ID: 2418752045
Research output: Research - peer-review ; Journal article – Annual report year: 2018