Climate-mediated changes in marine ecosystem regulation during El Niño - DTU Orbit

Climate-mediated changes in marine ecosystem regulation during El Niño

The degree to which ecosystems are regulated through bottom-up, top-down or direct physical processes represents a long-standing issue in ecology, with important consequences for resource management and conservation. In marine ecosystems, the role of bottom-up and top-down forcing has been shown to vary over spatio-temporal scales, often linked to highly variable and heterogeneously distributed environmental conditions. Ecosystem dynamics in the Northeast Pacific have been suggested to be predominately bottom-up regulated. However, it remains unknown to what extent top-down regulation occurs, or whether the relative importance of bottom-up and top-down forcing may shift in response to climate change. In this study, we investigate the effects and relative importance of bottom-up, top-down and physical forcing during changing climate conditions on ecosystem regulation in the Southern California Current System (SCCS) using a generalized food web model. This statistical approach is based on non-linear threshold models and a long-term data set (~60 year) covering multiple trophic levels from phytoplankton to predatory fish. We found bottom-up control to be the primary mode of ecosystem regulation. However, our results also demonstrate an alternative mode of regulation represented by interacting bottom-up and top-down forcing, analogous to wasp-waist dynamics, but occurring across multiple trophic levels and only during periods of reduced bottom-up forcing (i.e., weak upwelling, low nutrient concentrations and primary production). The shifts in ecosystem regulation are caused by changes in ocean-atmosphere forcing and triggered by highly variable climate conditions associated with El Niño. Furthermore, we show that biota respond differently to major El Niño events during positive or negative phases of the Pacific Decadal Oscillation (PDO), as well as highlight potential concerns for marine and fisheries management by demonstrating increased sensitivity of pelagic fish to exploitation during El Niño. This article is protected by copyright. All rights reserved.

General information
State: Published
Organisations: National Institute of Aquatic Resources, Centre for Ocean Life, University of California, San Diego
Authors: Lindegren, M. (Intern), Checkley, D. M. (Ekstern), Koslow, J. A. (Ekstern), Goericke, R. (Ekstern), Ohman, M. D. (Ekstern)
Pages: 796-809
Publication date: 2017
Main Research Area: Technical/natural sciences

Publication information
Journal: Global Change Biology
Volume: 24
Issue number: 2
ISSN (Print): 1354-1013
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): SJR 5.239 SNIP 2.585 CiteScore 8.48
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): SJR 4.636 SNIP 2.693 CiteScore 8.33
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): SJR 4.624 SNIP 2.655 CiteScore 8.4
Web of Science (2013): Indexed yes
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): SJR 4.228 SNIP 2.388 CiteScore 7.2
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): SJR 4.385 SNIP 2.23 CiteScore 6.86
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 4.394 SNIP 2.257
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 4.127 SNIP 2.178
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 3.934 SNIP 2.203
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 3.09 SNIP 1.837
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 3.148 SNIP 1.897
Scopus rating (2005): SJR 2.529 SNIP 1.877
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 2.679 SNIP 1.682
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 2.557 SNIP 1.561
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 2.456 SNIP 1.574
Scopus rating (2001): SJR 2.74 SNIP 1.488
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 2.912 SNIP 1.605
Scopus rating (1999): SJR 2.715 SNIP 1.48
Original language: English
PDO, El Niño, bottom-up, climate, ecosystem regulation, food web model, management, top-down
DOIs:
10.1111/gcb.13993
Source: FindIt
Source-ID: 2393552066
Publication: Research - peer-review › Journal article – Annual report year: 2017