Cities are becoming increasingly vulnerable to flooding because of rapid urbanization, installation of complex infrastructure, and changes in the precipitation patterns caused by anthropogenic climate change. The present paper provides a critical review of the current state-of-the-art methods for assessing the impacts of climate change on precipitation at the urban catchment scale. Downscaling of results from global circulation models or regional climate models to urban catchment scales are needed because these models are not able to describe accurately the rainfall process at suitable high temporal and spatial resolution for urban drainage studies. The downscaled rainfall results are however highly uncertain, depending on the models and downscaling methods considered. This uncertainty becomes more challenging for rainfall extremes since the properties of these extremes do not automatically reflect those of average precipitation. In this paper, following an overview of some recent advances in the development of innovative methods for assessing the impacts of climate change on urban rainfall extremes as well as on urban hydrology and hydraulics, several existing difficulties and remaining challenges in dealing with this assessment are discussed and further research needs are described.
Web of Science (2011): Impact factor 1.911
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.965 SNIP 0.966
Web of Science (2010): Impact factor 1.597
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.013 SNIP 1.194
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.81 SNIP 0.95
Scopus rating (2007): SJR 1.154 SNIP 1.078
Scopus rating (2006): SJR 0.853 SNIP 0.817
Scopus rating (2005): SJR 0.942 SNIP 1.006
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 0.856 SNIP 0.806
Scopus rating (2003): SJR 0.973 SNIP 0.841
Scopus rating (2002): SJR 0.607 SNIP 0.852
Scopus rating (2001): SJR 0.755 SNIP 0.542
Scopus rating (2000): SJR 0.673 SNIP 0.741
Scopus rating (1999): SJR 0.638 SNIP 0.572
Original language: English
Keywords: Urban drainage, Downscaling methods, Climate change, Rainfall extremes
DOIs:
10.1016/j.atmosres.2011.04.003
Source: orbit
Source-ID: 313668
Research output: Research - peer-review › Journal article – Annual report year: 2012