Chlorobenzene removal efficiencies and removal processes in a pilot-scale constructed wetland treating contaminated groundwater - DTU Orbit (04/02/2019)

Low-chlorinated benzenes (CBs) are widespread groundwater contaminants and often threaten to contaminate surface waters. Constructed wetlands (CWs) in river floodplains are a promising technology for protecting sensitive surface water bodies from the impact of CBs. The efficiency and seasonal variability of monochlorobenzene (MCB), 1,4-dichlorobenzene (1,4-DCB) and 1,2-dichlorobenzene (1,2-DCB) removal, the impact of planting, and gaseous MCB emissions from the filter surface were investigated over the course of 1 year in both a vegetated pilot-scale CW and an unplanted reference plot (UR). Annual mean concentration decreases of MCB and 1,4-DCB were observed; however, annual mean 1,2-DCB removal was seen only in the upper filter layer. Planting (Phragmites australis) had a statistically significant beneficial effect on removal. The CB removal efficiency in the CW generally decreased with depth, and seasonal variations of removal were evident, with less concentration decrease during summer. Load removal efficiencies of 59–65% (262–358 mg/m²·d) for MCB, 59–69% (4.0–5.1 mg/m²·d) for 1,4-DCB and 29–42% (0.6–2.1 mg/m²·d) for 1,2-DCB were observed in June and July. Volatilization of MCB from the filter surface accounted for 2–4% of the total amount removed. Simple cover layers of organic materials on the filter surface were suitable for MCB emission reduction. Model calculations were carried out to estimate the MCB removal potential attributable to microbial degradation, volatilisation, and plant uptake in the CW and UR. Microbial degradation was the dominating process. The observed positive impact of plants on MCB removal was caused by improved oxygen supply (due to root oxygen release into the rhizosphere and enhanced water table fluctuations), and direct plant uptake.

General information
State: Published
Organisations: Environmental Chemistry, Department of Environmental Engineering, Helmholtz Center for Environmental Research (UFZ)
Contributors: Braeckevelt, M., Reiche, N., Trapp, S., Wiessner, A., Paschke, H., Kuschk, P., Kaestner, M.
Pages: 903-913
Publication date: 2011
Peer-reviewed: Yes

Publication information
Journal: Ecological Engineering
Volume: 37
Issue number: 6
ISSN (Print): 0925-8574
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 3.43 SJR 1.042 SNIP 1.34
Web of Science (2017): Impact factor 3.023
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.45 SJR 1.069 SNIP 1.534
Web of Science (2016): Impact factor 2.914
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 3.09 SJR 1.081 SNIP 1.486
Web of Science (2015): Impact factor 2.74
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 3.03 SJR 1.183 SNIP 1.653
Web of Science (2014): Impact factor 2.58
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 3.55 SJR 1.231 SNIP 2.069
Web of Science (2013): Impact factor 3.041
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 3.48 SJR 1.692 SNIP 2.124
Web of Science (2012): Impact factor 2.958
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 3.6 SJR 1.699 SNIP 1.877
Web of Science (2011): Impact factor 3.106
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.216 SNIP 1.513
Web of Science (2010): Impact factor 2.203
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.465 SNIP 2.097
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.113 SNIP 1.55
Scopus rating (2007): SJR 1.307 SNIP 1.437
Scopus rating (2006): SJR 0.814 SNIP 1.203
Scopus rating (2005): SJR 0.931 SNIP 1.488
Scopus rating (2004): SJR 0.69 SNIP 1.111
Scopus rating (2003): SJR 1.064 SNIP 1.393
Scopus rating (2002): SJR 0.826 SNIP 0.984
Scopus rating (2001): SJR 0.424 SNIP 0.841
Scopus rating (2000): SJR 0.405 SNIP 0.898
Scopus rating (1999): SJR 0.482 SNIP 0.906
Original language: English
Keywords: Dichlorobenzene, Phytoremediation, Oxygen input, VOC emissions, Modeling, Monochlorobenzene
DOIs:
10.1016/j.ecoleng.2011.01.014
Source: orbit
Source-ID: 278151
Research output: Research - peer-review | Journal article – Annual report year: 2011