Chinese life cycle impact assessment factors

The methodological basis and procedures for determination of Chinese normalization references and weighting factors according to the EDIP-method is described. According to Chinese industrial development intensity and population density, China was divided into three regions and the normalization references for each region were calculated on the basis of an inventory of all of the region's environmental emissions in 1990. The normalization reference was determined as the total environmental impact potential for the area in question in 1990 \((EP(j)(90)) \) divided by the population. The weighting factor was determined as the normalization reference \((ER (j)(90)) \) divided by society's target contribution in the year 2000 abased on Chinese political reduction plans, \(ER (j)(T2000) \). This paper presents and discuss results obtained for eight different environmental impact categories relevant for China: global warming, stratospheric ozone depletion, acidification, nutrient enrichment, photochemical ozone formation and generation of bulk waste, hazardous waste and slag and ashes.

General information
State: Published
Organisations: Department of Manufacturing Engineering, Chinese Academy of Sciences
Contributors: Yang, J., Nielsen, P. H.
Pages: 205-209
Publication date: Apr 2001
Peer-reviewed: Yes

Publication information
Journal: Journal of Environmental Sciences
Volume: 13
Issue number: 2
ISSN (Print): 1001-0742
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 3.03 SJR 0.156 SNIP 0.222
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.95 SJR 0.165 SNIP 0.291
Web of Science (2016): Impact factor 2.865
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.65 SJR 0.157 SNIP 0.156
Web of Science (2015): Impact factor 2.208
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.33 SJR 0.162 SNIP 0.345
Web of Science (2014): Impact factor 2.002
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.41 SJR 0.151 SNIP 0.394
Web of Science (2013): Impact factor 1.922
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.16 SJR 0.207 SNIP 0.51
Web of Science (2012): Impact factor 1.773
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 2.2 SJR 0.181 SNIP 0.409
Web of Science (2011): Impact factor 1.66
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.152 SNIP 0.241