Chemical stability of La0.6Sr0.4CoO3−δ in oxygen permeation applications under exposure to N2 and CO2

Publication: Research - peer-reviewJournal article – Annual report year: 2012

View graph of relations

Phase stability and chemical reactivity of (La0.6Sr0.4)0.99CoO3−δ (LSC64) was tested in oxidative (pO2= 0.21 atm) and slightly reducing conditions (pO2~10−5 atm), as well as in carbon dioxide (pO2~10−4 atm) to evaluate the material performance for oxygen separation technologies. Thin film LSC64 oxygen separation membranes (20–30 μm) were manufactured and electrochemical performance was evaluated at a range of temperatures with either nitrogen or CO2 purged on the permeate side of the membrane. Material stability was also investigated by high temperature X-ray diffraction, TGA and conductivity measurements in air, N2 and CO2. Under mild reduction LSC64 partly decomposes to a K2NiF4-type phase (i.e. (La,Sr)2CoO4), and Co-oxide, and under high pCO2 forms SrCO3. The latter is found to impair membrane performance. Electrical properties and oxygen permeation (jO2) in thin membranes depend on the thermal and chemical history of the samples. A flux of 4–6 Nml min−1 cm−2 in the temperature range of 800–900 °C was demonstrated for optimized membranes and conditions. © 2012 Elsevier B.V. All rights reserved.
Original languageEnglish
JournalSolid State Ionics
Publication date2012
Volume227
Pages46–56
ISSN0167-2738
DOIs
StatePublished
CitationsWeb of Science® Times Cited: 1

Keywords

  • Perovskites, La0.6Sr0.4CoO3−δ, Oxygen Transport Membranes, SrCO3
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 12735196