Chasing bacterial chassis for metabolic engineering: a perspective review from classical to non-traditional microorganisms

Chasing bacterial chassis for metabolic engineering: a perspective review from classical to non-traditional microorganisms

The last few years have witnessed an unprecedented increase in the number of novel bacterial species that hold potential to be used for metabolic engineering. Historically, however, only a handful of bacteria have attained the acceptance and widespread use that are needed to fulfill the needs of industrial bioproduction – and only for the synthesis of very few, structurally simple compounds. One of the reasons for this unfortunate circumstance has been the dearth of tools for targeted genome engineering of bacterial chassis, and, nowadays, synthetic biology is significantly helping to bridge such knowledge gap. Against this background, in this review, we discuss the state of the art in the rational design and construction of robust bacterial chassis for metabolic engineering, presenting key examples of bacterial species that have secured a place in industrial bioproduction. The emergence of novel bacterial chassis is also considered at the light of the unique properties of their physiology and metabolism, and the practical applications in which they are expected to outperform other microbial platforms. Emerging opportunities, essential strategies to enable successful development of industrial phenotypes, and major challenges in the field of bacterial chassis development are also discussed, outlining the solutions that contemporary synthetic biology-guided metabolic engineering offers to tackle these issues.

General information
State: Published
Organisations: Novo Nordisk Foundation Center for Biosustainability, Systems Environmental Microbiology, Research Groups
Contributors: Calero, P., Nikel, P. I.
Pages: 98-124
Publication date: 2019
Peer-reviewed: Yes

Publication information
Journal: Microbial Biotechnology
Volume: 12
Issue number: 1
Ratings:
Web of Science (2019): Indexed yes
Web of Science (2018): Indexed yes
Scopus rating (2017): CiteScore 3.99
Web of Science (2017): Impact factor 3.913
Web of Science (2017): Indexed yes
Scopus rating (2016): CiteScore 3.56
Scopus rating (2015): CiteScore 3.59
Scopus rating (2014): CiteScore 3.19
Scopus rating (2013): CiteScore 3
ISI indexed (2013): ISI indexed no
Scopus rating (2012): CiteScore 2.7
ISI indexed (2012): ISI indexed no
Scopus rating (2011): CiteScore 1.92
ISI indexed (2011): ISI indexed no
Original language: English
Electronic versions:
Calero_et_al_2019_Microbial_Biotechnology.pdf
DOIs:
10.1111/1751-7915.13292

Bibliographical note
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Source: FindIt
Source-ID: 2436070326
Research output: Research - peer-review » Review – Annual report year: 2019