Characterizing Strain Variation in Engineered E. coli Using a Multi-Omics-Based Workflow - DTU Orbit (24/10/2018)

Characterizing Strain Variation in Engineered E. coli Using a Multi-Omics-Based Workflow

Understanding the complex interactions that occur between heterologous and native biochemical pathways represents a major challenge in metabolic engineering and synthetic biology. We present a workflow that integrates metabolomics, proteomics, and genome-scale models of Escherichia coli metabolism to study the effects of introducing a heterologous pathway into a microbial host. This workflow incorporates complementary approaches from computational systems biology, metabolic engineering, and synthetic biology; provides molecular insight into how the host organism microenvironment changes due to pathway engineering; and demonstrates how biological mechanisms underlying strain variation can be exploited as an engineering strategy to increase product yield. As a proof of concept, we present the analysis of eight engineered strains producing three biofuels: isopentenol, limonene, and bisabolene. Application of this workflow identified the roles of candidate genes, pathways, and biochemical reactions in observed experimental phenomena and facilitated the construction of a mutant strain with improved productivity. The contributed workflow is available as an open-source tool in the form of iPython notebooks.

General information
State: Published
Organisations: Novo Nordisk Foundation Center for Biosustainability, Network Reconstruction in Silico Biology, Joint Bioenergy Institute, University of California
Number of pages: 13
Pages: 335-346
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Cell Systems
Volume: 2
Issue number: 5
ISSN (Print): 2405-4712
Ratings:
- Web of Science (2018): Indexed yes
- Scopus rating (2017): CiteScore 4.98
- Web of Science (2017): Impact factor 8.982
- Web of Science (2017): Indexed yes
- Scopus rating (2016): CiteScore 4.31
Original language: English
Electronic versions:
- Characterizing_strains_variation_in_engineered_E._coli_using_a_multi_omics_based_workflow.pdf
DOIs:
- 10.1016/j.cels.2016.04.004
Research output: Research - peer-review › Journal article – Annual report year: 2016