Characterization of the Human Risk of Salmonellosis Related to Consumption of Pork Products in Different E.U. Countries Based on a QMRA - DTU Orbit (24/12/2018)

In response to the European Food Safety Authority's wish to assess the reduction of human cases of salmonellosis by implementing control measures at different points in the farm-to-consumption chain for pork products, a quantitative microbiological risk assessment (QMRA) was developed. The model simulated the occurrence of Salmonella from the farm to consumption of pork cuts, minced meat, and fermented ready-to-eat sausage, respectively, and a dose-response model was used to estimate the probability of illness at consumption. The QMRA has a generic structure with a defined set of variables, whose values are changed according to the E.U. member state (MS) of interest. In this article we demonstrate the use of the QMRA in four MSs, representing different types of countries. The predicted probability of illness from the QMRA was between 1 in 100,000 and 1 in 10 million per serving across all three product types. Fermented ready-to-eat sausage imposed the highest probability of illness per serving in all countries, whereas the risks per serving of minced meat and pork chops were similar within each MS. For each of the products, the risk varied by a factor of 100 between the four MSs. The influence of lack of information for different variables was assessed by rerunning the model with alternative, more extreme, values. Out of the large number of uncertain variables, only a few of them have a strong influence on the probability of illness, in particular those describing the preparation at home and consumption.

General information
State: Published
Organisations: National Food Institute, Research group for Genomic Epidemiology, Technical University of Denmark, National Institute of Public Health and the Environment, Animal Health and Veterinary Laboratories Agency
Number of pages: 15
Pages: 531-545
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Risk Analysis
Volume: 36
Issue number: 3
ISSN (Print): 0272-4332
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.43 SJR 1.01 SNIP 1.381
Web of Science (2017): Impact factor 2.898
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.21 SJR 1.12 SNIP 1.485
Web of Science (2016): Impact factor 2.518
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.51 SJR 1.334 SNIP 1.495
Web of Science (2015): Impact factor 2.225
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.2 SJR 1.331 SNIP 1.588
Web of Science (2014): Impact factor 2.502
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.1 SJR 1.067 SNIP 1.595
Web of Science (2013): Impact factor 1.974
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.12 SJR 0.76 SNIP 1.593
Web of Science (2012): Impact factor 2.278
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 2.15 SJR 0.735 SNIP 1.693
Web of Science (2011): Impact factor 2.366
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.739 SNIP 1.51
Web of Science (2010): Impact factor 2.096
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.639 SNIP 1.401
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.671 SNIP 1.429
Scopus rating (2007): SJR 0.914 SNIP 1.469
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 0.826 SNIP 1.441
Scopus rating (2005): SJR 0.736 SNIP 1.489
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 0.762 SNIP 1.359
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 0.65 SNIP 1.318
Scopus rating (2002): SJR 0.59 SNIP 1.245
Scopus rating (2001): SJR 0.759 SNIP 1.732
Scopus rating (2000): SJR 0.763 SNIP 1.468
Scopus rating (1999): SJR 0.799 SNIP 1.506
Original language: English
Keywords: QMRA, risk characterization, Salmonella in pork, uncertainty analysis
DOIs:
10.1111/risa.12499
Source: FindIt
Source-ID: 277361644
Research output: Research - peer-review › Journal article – Annual report year: 2016