Characterization of positional errors and their influence on micro four-point probe measurements on a 100 nm Ru film - DTU Orbit (14/04/2019)

Characterization of positional errors and their influence on micro four-point probe measurements on a 100 nm Ru film

Thin-film sheet resistance measurements at high spatial resolution and on small pads are important and can be realized with micrometer-scale four-point probes. As a result of the small scale the measurements are affected by electrode position errors. We have characterized the electrode position errors in measurements on Ru thin film using an Au-coated 12-point probe. We show that the standard deviation of the static electrode position error is on the order of 5 nm, which significantly affects the results of single configuration measurements. Position-error-corrected dual-configuration measurements, however, are shown to eliminate the effect of position errors to a level limited either by electrical measurement noise or dynamic position errors. We show that the probe contact points remain almost static on the surface during the measurements (measured on an atomic scale) with a standard deviation of the dynamic position errors of 3 Å. We demonstrate how to experimentally distinguish between different sources of measurement errors, e.g. electrical measurement noise, probe geometry error as well as static and dynamic electrode position errors.

General information
Publication status: Published
Organisations: Department of Micro- and Nanotechnology, Silicon Microtechnology, Department of Physics, Experimental Surface and Nanomaterials Physics, Capres A/S
Contributors: Kjær, D., Hansen, O., Østerberg, F. W., Henrichsen, H. H., Markvardsen, C., Nielsen, P. F., Petersen, D. H.
Number of pages: 7
Pages: 095005
Publication date: 2015
Peer-reviewed: Yes

Publication information
Journal: Measurement Science and Technology
Volume: 26
Issue number: 9
ISSN (Print): 0957-0233
Ratings:
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 1.71 SJR 0.704 SNIP 1.368
Web of Science (2015): Impact factor 1.492
Web of Science (2015): Indexed yes
Original language: English
Keywords: Four-point measurement, Four-point probe, Four-point resistance, Microprobe, Position correction, Sheet resistance, Thin film, Electric resistance measurement, Electric variables measurement, Electrodes
DOIs:
10.1088/0957-0233/26/9/095005
Source: FindIt
Source-ID: 2279875444
Research output: Contribution to journal › Journal article – Annual report year: 2015 › Research › peer-review