Characterization of HIV-Specific CD4+T Cell Responses against Peptides Selected with Broad Population and Pathogen Coverage

Publication: Research - peer-reviewJournal article – Annual report year: 2012

Documents

DOI

View graph of relations

CD4+ T cells orchestrate immunity against viral infections, but their importance in HIV infection remains controversial. Nevertheless, comprehensive studies have associated increase in breadth and functional characteristics of HIV-specific CD4+ T cells with decreased viral load. A major challenge for the identification of HIV-specific CD4+ T cells targeting broadly reactive epitopes in populations with diverse ethnic background stems from the vast genomic variation of HIV and the diversity of the host cellular immune system. Here, we describe a novel epitope selection strategy, PopCover, that aims to resolve this challenge, and identify a set of potential HLA class II-restricted HIV epitopes that in concert will provide optimal viral and host coverage. Using this selection strategy, we identified 64 putative epitopes (peptides) located in the Gag, Nef, Env, Pol and Tat protein regions of HIV. In total, 73% of the predicted peptides were found to induce HIV-specific CD4+ T cell responses. The Gag and Nef peptides induced most responses. The vast majority of the peptides (93%) had predicted restriction to the patient's HLA alleles. Interestingly, the viral load in viremic patients was inversely correlated to the number of targeted Gag peptides. In addition, the predicted Gag peptides were found to induce broader polyfunctional CD4+ T cell responses compared to the commonly used Gag-p55 peptide pool. These results demonstrate the power of the PopCover method for the identification of broadly recognized HLA class II-restricted epitopes. All together, selection strategies, such as PopCover, might with success be used for the evaluation of antigen-specific CD4+ T cell responses and design of future vaccines.
Original languageEnglish
JournalP L o S One
Publication date2012
Volume7
Issue7
ISSN1932-6203
DOIs
StatePublished
CitationsWeb of Science® Times Cited: 5

Keywords

  • BIOLOGY, CD8(+) T-CELLS, BINDING PREDICTION, ALLELE ASSIGNMENT, CD8-T-CELL MEMORY, CD4-T-CELL HELP, EXON-2 DNA, INFECTION, EPITOPES, GAG, REPLICATION
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

Download statistics

No data available

ID: 10263653