Characterization of Cross-Linked Lipase Aggregates - DTU Orbit (16/12/2018)

Characterization of Cross-Linked Lipase Aggregates

Commercially available microbial lipases from different sources were immobilized as cross-linked enzyme aggregates (CLEAs) using different precipitants and glutaraldehyde as cross-linkers. These CLEAs were assayed based on esterification between lauric acid and n-propanol in solvent-free systems. Precipitants were found to have a profound influence on both specific activities and total activity recovery of CLEAs, as exemplified by Candida antarctica lipase B (CALB). Among the CLEAs of CALB studied, those obtained using PEG600, ammonium sulfate, PEG200 and acetone as precipitants were observed to attain over 200% total activity recovery in comparison with acetone powder directly precipitated from the liquid solution by acetone. PEG200 precipitated CLEA gave the best specific activity (139% relative to acetone powder). The results of kinetic studies showed that \(\frac{V}{K(\text{m})} \) does not significantly change upon CLEA formation. This work presents a characterization of CLEAs based on an esterification activity assay, which is useful for exploring the synthetic application potential of CLEA technology with favorable perspectives.

General information

State: Published
Organisations: Division of Food Production Engineering, National Food Institute, Aarhus University
Contributors: Prabhavathi Devi, B. L. A., Guo, Z., Xu, X.
Pages: 637-642
Publication date: 2009
Peer-reviewed: Yes

Publication information

Journal: J A O C S
Volume: 86
Issue number: 7
ISSN (Print): 0003-021X
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.72 SJR 0.641 SNIP 1.004
Web of Science (2017): Impact factor 1.601
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.64 SJR 0.706 SNIP 0.916
Web of Science (2016): Impact factor 1.421
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.66 SJR 0.678 SNIP 0.991
Web of Science (2015): Impact factor 1.505
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.68 SJR 0.768 SNIP 1.053
Web of Science (2014): Impact factor 1.541
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.71 SJR 0.812 SNIP 1.069
Web of Science (2013): Impact factor 1.62
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.81 SJR 0.852 SNIP 1.233
Web of Science (2012): Impact factor 1.592
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 1.98 SJR 0.851 SNIP 1.31
Web of Science (2011): Impact factor 1.773
ISI indexed (2011): ISI indexed yes