Characteristics of Xanthosoma sagittifolium roots during cooking, using physicochemical analysis, uniaxial compression, multispectral imaging and low field NMR spectroscopy

To effectively promote the industrial utilization of cocoyam (Xanthosoma sagittifolium) roots for enhanced food sustainability and security, there is a need to study their molecular, mechanical and physicochemical properties in detail. The physicochemical and textural characteristics of the red and white varieties of cocoyam roots were thus analysed by low field nuclear magnetic resonance relaxometry, multispectral imaging, uniaxial compression testing, and relevant physicochemical analysis in the current study. Both varieties had similar dry matter content, as well as physical and mechanical properties. However, up to four fast-interacting water populations were observed in the roots, dependent on the root variety and their degree of gelatinization during cooking. Changes in the relaxation parameters indicated weak gelatinization of starch at approximately 80 °C in both varieties. However, shorter relaxation times and a higher proportion of restricted water in the white variety indicated that this variety was slightly more sensitive towards gelatinization. A strong negative correlation existed between dry matter and all multispectral wavelengths >800 nm, suggesting the potential use of that spectral region for rapid analysis of dry matter and water content of the roots. The small, but significant differences in the structural and gelatinization characteristics of the two varieties indicated that they may not be equally suited for further processing, e.g. to flours or starches. Processors thus need to choose their raw materials wisely dependent on the aimed product characteristics. However, the spectroscopic methods applied in the study were shown to be effective in assessing important quality attributes during cooking of the roots.

General information
State: Accepted/In press
Organisations: National Food Institute, Research Group for Food Production Engineering, Research Group for Nano-Bio Science, Technical University of Denmark, University of Iceland
Authors: Boakye, A. A. (Ekstern), Gudjónsdóttir, M. (Ekstern), Skytte, J. L. (Intern), Chronakis, I. S. (Intern), Wireko-Manu, F. D. (Ekstern), Oduro, I. (Ekstern)
Number of pages: 14
Publication date: 8 Jul 2017
Main Research Area: Technical/natural sciences

Publication information
Journal: Journal of Food Science and Technology
ISSN (Print): 0022-1155
Ratings:
BFI (2017): BFI-level 1
Web of Science (2017): Indexed Yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.43 SJR 0.544 SNIP 0.916
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 0.433 SNIP 0.914 CiteScore 1.08
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 0.506 SNIP 1.385 CiteScore 1.34
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 0.488 SNIP 1.01 CiteScore 1.55
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): SJR 0.395 SNIP 0.902 CiteScore 0.71
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): SJR 0.344 SNIP 0.668 CiteScore 0.51
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.31 SNIP 0.532
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.269 SNIP 0.454
BFI (2008): BFI-level 1
Cocoyam (Xanthosoma sagittifolium), Cooking, Gelatinization, Low field nuclear magnetic resonance (LF-NMR), Multispectral imaging, Physicochemical properties, Texture

DOI: 10.1007/s13197-017-2704-7
Source: Scopus
Source-ID: 85022059757
Publication: Research - peer-review › Journal article – Annual report year: 2017