Characterisation and processing of aqueous LaNi$_{0.6}$Fe$_{0.4}$O$_3$ Suspensions into Porous Electrode Layers for Alkaline Water Electrolysis

The colloidal properties and processing of aqueous LaNi$_{0.6}$Fe$_{0.4}$O$_3$ suspensions into electrode layers with hierarchical pore sizes has been investigated by light scattering, electron microscopy and rheology. We found that the colloidal stability of the oxide particles and the resulting microstructure of the electrode layers were similar when dispersing the particles at their intrinsic pH, or when adding polyvinylpyrrolidone. The addition of the ammonium salt of poly(methaacrylic acid) resulted in a poor colloidal stability and the concentrated suspensions became viscoelastic during processing. Addition of rice starch resulted in an increase of the porosity but the cast electrode layers cracked and delaminated.

General information
State: Published
Organisations: Department of Energy Conversion and Storage, Ceramic Engineering & Science, Aragon Hydrogen Foundation, Stockholm University
Number of pages: 8
Pages: 1271-1278
Publication date: 2019
Peer-reviewed: Yes

Publication Information
Journal: Journal of the European Ceramic Society
Volume: 39
Issue number: 4
ISSN (Print): 0955-2219
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 3.55 SJR 1.068 SNIP 1.698
Web of Science (2017): Impact factor 3.794
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.25 SJR 1.142 SNIP 1.888
Web of Science (2016): Impact factor 3.454
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 3.03 SJR 1.135 SNIP 1.817
Web of Science (2015): Impact factor 2.933
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 3.16 SJR 1.163 SNIP 2.083
Web of Science (2014): Impact factor 2.947
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.57 SJR 1.111 SNIP 1.79
Web of Science (2013): Impact factor 2.307
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.81 SJR 1.293 SNIP 2.207
Web of Science (2012): Impact factor 2.36
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 2.83 SJR 1.343 SNIP 2.195
Web of Science (2011): Impact factor 2.353
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.383 SNIP 1.93
Web of Science (2010): Impact factor 2.575
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.374 SNIP 1.712
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.139 SNIP 1.627
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.212 SNIP 1.745
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.22 SNIP 1.665
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.095 SNIP 1.633
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 1.055 SNIP 1.743
Scopus rating (2003): SJR 1.151 SNIP 1.496
Scopus rating (2002): SJR 1.101 SNIP 1.184
Scopus rating (2001): SJR 1.236 SNIP 1.593
Scopus rating (2000): SJR 0.829 SNIP 1.179
Scopus rating (1999): SJR 1.11 SNIP 1.182
Original language: English
Keywords: Alkaline Electrolysis, Ceramic processing, Characterization of ceramic suspensions, Porous electrodes
DOIs: 10.1016/j.jeurceramsoc.2018.10.020
Source: FindIt
Source-ID: 2440952049
Research output: Research - peer-review › Journal article – Annual report year: 2019