Full-scale deep drawing tests using tools featuring multifunctional surfaces are carried out in a production environment. Multifunctional tools display regularly spaced, transversal grooves for lubricant retention obtained by hard-turning, separated by smooth bearing plateaus realized by robot assisted polishing. Advanced methods are employed to characterise the tools' surface topographies, detecting the surface features and analysing them separately according to their specific function. Four different multifunctional dies as well as two un-textured references are selected for testing. The tests are run using a non-hazardous, environmentally friendly lubricant, and the forming forces are constantly recorded. Multifunctional dies exhibit very good performances, with no galling occurrence and punch forces generally lower than the two references.

General information
State: Published
Organisations: Department of Mechanical Engineering, Manufacturing Engineering, Strecon A/S
Contributors: Godi, A., Grønbæk, J., De Chiffre, L.
Number of pages: 8
Pages: 64–71
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: C I R P - Journal of Manufacturing Science and Technology
Volume: 16
ISSN (Print): 1755-5817
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.78 SJR 1.377 SNIP 2.049
Web of Science (2017): Indexed yes
Scopus rating (2016): CiteScore 2.76 SJR 1.107 SNIP 2.093
Web of Science (2016): Indexed yes
Scopus rating (2015): CiteScore 2.55 SJR 1.197 SNIP 1.847
Web of Science (2015): Indexed yes
Scopus rating (2014): CiteScore 2.46 SJR 1.349 SNIP 1.863
Scopus rating (2013): CiteScore 2.01 SJR 0.992 SNIP 1.771
ISI indexed (2013): ISI indexed no
Scopus rating (2012): CiteScore 1.69 SJR 0.776 SNIP 1.799
ISI indexed (2012): ISI indexed no
Scopus rating (2011): CiteScore 1.72 SJR 0.941 SNIP 1.988
ISI indexed (2011): ISI indexed no
Scopus rating (2010): SJR 1.124 SNIP 2.324
Scopus rating (2009): SJR 0.917 SNIP 1.183
Original language: English
Keywords: Functional surfaces, Metal forming, Production tests, Surface characterisation, Metal drawing, Deep drawing tests, Environmentally friendly lubricants
DOIs:
10.1016/j.cirpj.2016.07.001
Source: FindIt
Source-ID: 2319823705
Research output: Research - peer-review › Journal article – Annual report year: 2016