When the covariance matrix formulation is used for multilook polarimetric synthetic aperture radar (SAR) data, the complex Wishart distribution applies. Based on this distribution, a test statistic for equality of two complex variance–covariance matrices and an associated asymptotic probability of obtaining a smaller value of the test statistic are given. In a case study, airborne EMISAR C- and L-band SAR images from the spring of 1998 covering agricultural fields and wooded areas near Foulum, Denmark, are used in single- and bifrequency, bitemporal change detection with full and dual polarimetry data.
Scopus rating (2010): SJR 0.819 SNIP 2.238
Web of Science (2010): Impact factor 1.14
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.6 SNIP 1.428
BFI (2008): BFI-level 1
Web of Science (2008): Indexed yes
Original language: Undefined/Unknown
Keywords: Complex covariance matrix test statistic, Complex Wishart distribution, Dual polarization, Full polarization, EMISAR, Quad polarization, Remote sensing change detection
Electronic versions:
wishart_reduced.pdf
DOIs:
10.1109/JSTARS.2015.2416434

Bibliographical note
© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.
Source: FindIt
Source-ID: 274690359
Research output: Research - peer-review › Journal article – Annual report year: 2015