Cellular effects and delivery propensity of penetratin is influenced by conjugation to parathyroid hormone fragment 1-34 in synergy with pH - DTU Orbit (25/12/2018)

Cellular effects and delivery propensity of penetratin is influenced by conjugation to parathyroid hormone fragment 1-34 in synergy with pH

The cell-penetrating peptide (CPP) penetratin, has demonstrated potential as a carrier for transepithelial delivery of cargo peptides, such as the therapeutically relevant part of parathyroid hormone, i.e. PTH(1-34). The purpose of the present study was to elucidate the relevance of modifying the pH for PTH(1-34)-penetratin conjugates and for co-administered penetratin with PTH(1-34) in terms of transepithelial permeation of PTH(1-34) and cellular effects. Transepithelial permeation was assessed using monolayers of the Caco-2 cell culture model, and effects on Caco-2 cellular viability kinetics were evaluated by using the Real-Time-GLO assay as well as by microscopy following Trypan blue staining. Morphological Caco-2 cell changes were studied exploiting the impedance-based xCELLigence system as well as optically using the oCelloscope setup. Finally, the effect of pH on the folding propensity of the PTH(1-34)-penetratin conjugate and its ability to disrupt lipid membranes were assessed by circular dichroism (CD) spectroscopy and the calcein release assay, respectively. The transepithelial PTH(1-34) permeation was not pH-dependent when applying the co-administration approach. However, by applying the conjugation approach, the PTH(1-34) permeation was significantly enhanced by lowering the pH from 7.4 to 5, but also associated with a compromised barrier and a lowering of the cellular viability. The negative effects on the cellular viability following cellular incubation with the PTH(1-34)-penetratin conjugate were moreover confirmed during real-time monitoring of the Caco-2 cell viability as well as by enhanced Trypan blue uptake. In addition, morphological changes were primarily observed for cells incubated with the PTH(1-34)-penetratin conjugate at pH 5, which was moreover demonstrated to have an enhanced membrane permeating effect following lowering of the pH from 7.4 to 5. The latter observation was, however, not a result of better secondary folding propensity at pH 5 when compared to pH 7.4.

General information
State: Published
Organisations: Department of Micro- and Nanotechnology, Nanoprobes, Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, University of Copenhagen
Contributors: Kristensen, M., Nielsen, L. H., Zor, K., Boisen, A., Christensen, M. V., Berthelsen, J., Mørck Nielsen, H.
Pages: 371-381
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Bioconjugate Chemistry
Volume: 29
Issue number: 2
ISSN (Print): 1043-1802
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 4.4 SJR 1.801 SNIP 0.984
Web of Science (2017): Impact factor 4.485
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 4.63 SJR 1.802 SNIP 1.065
Web of Science (2016): Impact factor 4.818
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 4.64 SJR 1.664 SNIP 1.065
Web of Science (2015): Impact factor 4.5
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 4.85 SJR 1.711 SNIP 1.175
Web of Science (2014): Impact factor 4.513
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 5.12 SJR 2.02 SNIP 1.201
Web of Science (2013): Impact factor 4.821
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1