Cell growth regulation studies on our Biophotonics Workstation - DTU Orbit (02/01/2019)

Cell growth regulation studies on our Biophotonics Workstation

The past several years have seen an accelerated development of technologies and methods that enable the non-invasive analysis of single cells. These are vital as single cell studies provide important evidence and deepen our understanding of how networks of cells work and evolve. Exploring the full potential of our dynamic user-interactive optical trapping system (Biophotonics Workstation), we can surround various types of cells with other cells or other microscopic objects, thus studying the relation between confinement and cell growth.

General information
State: Published
Organisations: Department of Photonics Engineering, Programmable Phase Optics, OptoRobotix ApS
Contributors: Chouliara, M., Engay, E., Bañas, A., Separa, S. D., Glückstad, J.
Number of pages: 10
Publication date: 2018

Host publication information
Title of host publication: Proceedings of SPIE
Publisher: SPIE - International Society for Optical Engineering
Article number: 105491J
ISBN (Print): 9781510615830
Keywords: Optical trapping, Biophotonics Workstation, Cell confinement, Growth inhibition
DOIs:
10.1117/12.2292022
Research output: Research - peer-review › Article in proceedings – Annual report year: 2018